# The Journal of The Association 0i Lumar And Planetary Observers 

## The Strolling Astronomer

## 

Volume 36, Number 3
Published September, 1992


Several of the A.L.P.O. staff and members who attended the COSMOCON '92 convention in San Jose, California, in July 1992. From left to right, the persons shown are: John Westfall, Donald Parker, Elizabeth Westfall, Ashley McDermott, José Olivarez, Thomas Cragg, Michael Mattei, Robert Lunsford, Derald Nye, Richard Schmude, and Jack Eastman. For more about the 42 nd A.L.P.O. convention, see the report on pages 109-110 of this issue.

## IHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE

THE ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS c/o Dr. John E. Westfall, Director/Editor

Membership Secretary, Harry D. Jamieson P.O. Box 143

Heber Springs, AR 72543
U.S.A.


## IN THIS ITssus

THE 1992-93 APHELIC APPARITION OF MARS: THINGS TO COME, by Jeff Beish ..... pg. 97
THE 1990 WESTERN (MORNing) Apparition of THE PLANET VEnUs: VISUAL AND PHOTOGRAPHIC OBSERVATIONS, by Julius L. Benton, Jr. ..... pg. 101
COSMOCON ‘92: A PHOTOGRAPHIC REPORT ..... pg. 109
Minutes of the 1992 A.L.P.O. Board Meeting, SAN JOSE, CALIFORNIA, JULY 16, 1992 ..... pg. 111
GETTING STARTED:
Sketching Full-Disk Drawings of Jupiter, by José Olivarez ..... pg. 113
Diffuse Luminous Objects Having
ANGULAR VElocities Similar to Meteors, by John S. Gallagher ..... pg. 115
METEORS SECTION NEWS, by Robert D. Lunsford ..... pg. 116
AN UNDERSTUDIED CRATER IN NEVADA, by Harry D. Jamieson ..... pg. 119
COMET CORNER, by Don E. Machholz ..... pg. 121
LUNAR DOME CATALOG (APRIL 30, 1992 EDITION), by Harry D. Jamieson and James H. Phillips ..... pg. 123
COMING SOLAR-SYSTEM EVENTS:
OCTOBER-DECEMBER, 1992 ..... pg. 130
The Total Lunar Eclipse of 1992 Dec 09-10 ..... pg. 133
OUR READERS SpEAK:
SCHMIDT-CASSEGRAINS AND MARTIAN CRATERS, letters by Dennis di Cicco and Joel W. Goodman ..... pg. 135
JUPITER UPDATE, by José Olivarez and Isao Miyazaki ..... pg. 136
Book Reviews, Edited by José Olivarez ..... pg. 138
A.L.P.O. AFFAIRS ..... pg. 140
COMET SWIFT-TUTTLE RECOVERED ..... pg. 140
OTHER ACTIVITIES IN THE SOLAR SYSTEM ..... pg. 141
A.L.P.O. Volunteer Tutors ..... pg. 141
PUBLICATIONS OF THE ASSOCIATION OF
Lunar and Planetary Observers ..... pg. 144
ASSOCIATION BOARD OF DIRECTORS AND STAFF Inside Back Cover

# The 1992-93 Aphelic Apparition of Mars: Things To Come 

By: Jeff Beish, A.L.P.O. Mars Recorder

## INTRODUCTION

Camille Flammarion finished his extraordinary book, The Planet Mars, as the 1892 Apparition came to an end. He summarized all Mankind's knowledge of the Red Planet up to that time. Himself a keen observer and historian, he detailed the scientific interests of his contemporaries-great astronomers such as G.V. Schiaparelli, E.M. Antoniadi, and Percival Lowell. These men, who understood our insatiable appetite to explore the u known, helped give us the courage for space missions to the Moon and planets of our Solar System.

One hundred years later, we have embarked on the most ambitious exploration of the Red Planet to date. Launched recently, the Mars Observer spacecraft will arrive in Mars' orbit in Fall, 1993, to begin tests and calibration, and then to follow a polar orbit for a Martian year ( 687 Earth days) of mapping and scientific investigation. We too can journey out to Mars with this magnificent spacecraft. Amateur and professional astronomers are welcome to join in ground-based support of the Mars Observer adventure.

## Mars Observer Space Mission and Ground-Based Support

The Mars Observer space probe was launched on September 25, 1992, and will arrive for a four-month calibration/test period in Fall, 1993. Mars Observer will begin a fullscale investigation of the Red Planet in a polar orbit in mid-December 1993 and is scheduled to continue its surveillance for a full Martian year through October 1995. This period will provide Earth-based observers with an opportunity to record the planet Mars from a distance while receiving close-up observations from a Mars-orbiting space station. The 199293 and 1994-95 Apparitions of Mars will be important for the A.L.P.O. International Mars Patrol (IMP) as well as for the professional planetary scientists. We hope that, if this spacecraft achieves orbit around the Red Planet, observations by amateur astronomers will help to determine how effective groundbased telescope observations are in the longterm watch of our neighbor, the planet Mars. However, before we get ahead of ourselves, some recent history of Mars is in order.

## Space Missions of the Past

Seventeen years ago the United States launched the Viking 1 and Viking 2 spacecraft to Mars, providing the first successful exploration of the planet's surface. Viking 1 reached Mars in June 1976 and sent Lander 1 to the
surface on 20 July, 1976. As originally planned, these spacecraft and landers were to provide data for only 90 days. Viking Orbiter/Lander-2 failed in 1980 and Orbiter/ Lander-1 sent data to Earth until November 1982-a period of six years!

What were we looking for? Of primary interest was to determine if any life form had existed in Mars' past. We assumed, from earlier space flights, that if any life was found on this planet, it would probably be microscopic. The best data available at that time suggested that Mars had wetlands, the basic stuff to sustain life. We then thought the atmospheric pressure too high, 80-85 millibars, and anticipated that liquid water would dampen some of the lowlands as temperatures increased above $0^{\circ} \mathrm{C}$.

Safety was the first priority in determining where to land. The Chryse Planitum was selected for Lander 1, as it appeared to be a smooth enough place and was deemed to be one of the most interesting regions on Mars-morning bright patches, even bright cloud-like features and limb hazes, had been regularly recorded in this region by Earthbased observers for years. Lander 2 touched down far to the north in the region Utopia near Mars' north polar cap. Observers had suspected that a region very close to the retreating polar cap would be moist and a possible harbor for life. Experienced observers had reported a dark collar next to the retreating Martian polar cap during Martian Spring and early Summer, so it was suspected that this was a region of wet or moist surface material.

Not only did we find no life on Mars, we added to the long list of questions about this red world remaining to be answered. We hope that we will shorten that list in the near future.

It is ironic that most Americans do not remember this great achievement. Some would say Mankind's greatest scientific adventure was the Viking mission to Mars. It is puzzling why the American public knows so little of it.

## THE INTERNATIONAL Mars Patrol

The Association of Lunar and Planetary Observers (A.L.P.O.) Mars Section's observing program is an international cooperative effort among individual observers and members of observing groups located around the world. Established in the late 1960's by the late Charles F. Capen, the International Mars Patrol (IMP) has contributed more than 22,000 observations of Mars. Contained within the archives of the A.L.P.O. Mars Section library are the records of thirteen apparitions of Mars covering a span of 25 years.

The IMP participates in professional activities such as providing observers for Lowell Observatory's International Planetary Patrol and contributing high-quality photographs to the United States Geological Survey for creating maps of albedo features of the Red Planet. From the late 1960 's, interested amateur and professional astronomers located in 42 foreign countries and United States territories have cooperated in a 24 -hour watch of Mars. Additional support has been provided by the Oriental Astronomical Association (OAA), the British Astronomical Association (BAA), the Arbeitskreis Planetenbeobachter (Germany) and the Groupement International d'Observateurs des Surfaces Planetaires (GIOSP).

The Mars Section Recorders coordinate and instruct the cooperating observers in using similar visual, photographic, photometric, and micrometric techniques employing color filters and standard methods for reporting their observations, which results in homogeneous sets of observing data that have good analytic value. Each apparition, the A.L.P.O. Mars Section receives thousands of individual observations consisting of visual disk drawings made with the aid of color filters, black-andwhite and color photographs, intensity estimates of light and dark albedo features, color contrast estimates, and micrometer measurements of polar caps, cloud boundaries, and variable surface features during the 10 to 12 month observing period. These data are filed chronologically, so that the Universal Date must be recorded correctly on the standard observing report forms.

To foster consistency, a simple, efficient standard Mars Observing Report Form has been prepared by the A.L.P.O. Mars Recorders. This Standard Form, or another using its format, can be used for reporting all types of observations, such as: micrometry, transit timings, intensity estimates, and so on. Photographs may also be attached to the top or back of the form, and the relevant information blanks can be filled in at the telescope. Ephemeris data blanks can be filled in at other times than while observing.

Observational data consist of color filter photography, visual disk drawings, visual photometry (intensity estimates on the standard A.L.P.O. scale: $10=$ maximum polar brightness, $8=$ desert mean brightness, $0=$ night sky), micrometry, and CCD imaging. We place great emphasis on high-quality photographs in red, blue, and violet light; full-disk drawings using standard color filters; polarcap measurements made with the astronomical m crometer; and other data obtained with modern observing techniques such as full-disk photometry and CCD imaging.

## APPARITIONS OF MARS

The term "apparition" refers to the time span during which a planet is observable, in theory from one conjunction with the Sun to the next, but in reality the time from when one first can view the planet after it emerges from conjunction into the morning dawn sky to the
time just before the next conjunction, when the planet is seen low in the western sky after sunset. Practically speaking, however, highquality telescopic observations of Mars commence when its apparent diameter is greater than about 6 arc-seconds. Approximately in the middle of the apparition is Mars' opposition with the Sun, which is within a few days of the time of its closest approach to the Earth. Mars has an average 15.8 -year opposition cycle in terms of terrestrial and Martian seasons, a cycle which consists of three or four aphelic oppositions and three consecutive perihelic oppositions.

Although at the extremes of the apparition Mars is low in the sky where the turbulence of Earth's atmosphere is severe, we encourage A.L.P.O. astronomers to make observations even at these times. Fortunately, Mars will appear high in the Northern-Hemisphere's sky during the next four apparitions.

A red (Wratten 25 or equivalent) filter lessens the apparent seeing effects, because red wavelengths are refracted less, and also improves image contrast. While little or no fine detail can be discerned when the planet is low and of small apparent size, gross features, such as Syrtis Major, can be seen. If the observer has been regularly recognizing such features and suddenly notes their disappearance, one is led to suspect an obscuration, such as a dust storm.

## Observing Mars

Mars is a most difficult object to observe, owing to its small apparent size and high surface brightness. An excellent telescope and human patience is required for this study, and the rewards may appear small. However, major discoveries are made each apparition by amateur astronomers willing to take the time and effort to look at the God of War and then report their findings to us. Don't keep those telescopes locked up waiting for the Moon to go away-remember, light pollution has little or no effect on observing the planets and it is a long way out there to your favorite dark hideaway; so put your telescopes to work in your highly illuminated backyard tonight!

## A SUMMARY REPORT FOR 1990-91

Although participation in the 1990-91 Mars observation program fell short of the 7,063 observations turned in during 1988, the Association of Lunar and Planetary Observers' International Mars Patrol successfully convinced 96 Mars observers using 122 telescopes to contribute 2,024 visual and multicolored photographic observations of Mars; polar-cap measurements; and 44 video tapes of CCD images during the 1990-91 apparition of Mars. A complete apparition report is now being prepared.

During the 1990-91 Apparition of Mars, the planet's South Pole was tilted toward Earth, allowing detailed observations of the highly cratered and topographically interesting

Southern Hemisphere of the Red Planet. The 1990-91 Apparition was considered transitional because opposition occurred almost exactly 90 degrees from perihelion (see Figure 1, p. 100). Mars reached opposition on November 27, 1990, and was closest to the Earth on November 20, 1990, with a distance of $48,050,617$ miles ( $77,330,127 \mathrm{~km}$ ) and an apparent disk diameter of 18.11 arc-seconds.

The study of dust storms has been one of the priorities of the IMP. The dust program has two goals: (1) to alert professional astronomers as soon as dust clouds are detected; and (2) to monitor the progression and boundaries of the dust clouds. The system worked well for the two dust storms of 1988, but it was the 1990-91 Apparition that provided the opportunity to demonstrate the true international character of the IMP.

## MARS IN 1992 AND 1993

For observers located in the Northern Hemisphere of Earth, Summer, Autumn, and Winter of 1992-1993 will provide an opportune time to investigate the Northern Hemisphere of Mars. Over the last five years, the Southern Hemisphere of Mars has been exposed to ground-based observers; however, the next four apparitions, 1992-93, 1994-95, 1996-97, and 1998-99, will be Aphelic. This means that Mars' Northem Hemisphere will be most favorably positioned for Northern-Hemisphere observers. For many observers, Mars' north will be a new experience.

Mars will be favorably placed in the sky, north of the Celestial Equator, throughout the entire 1992-93 apparition.

## CHARACTERISTICS OF THE 1992-93 MARS APPARITION

The 1992-93 Apparition is considered an aphelic apparition because opposition occurs only 49 degrees before aphelion (opposition occurs at $022^{\circ} \mathrm{Ls}$ and aphelion at $071^{\circ} \mathrm{Ls}$, where Ls is the areocentric longitude of the Sun). Mars will be closest to Earth on January $3,1993\left(020^{\circ} \mathrm{Ls}\right)$ and will reach opposition on January 7, 1993 ( $022^{\circ}$ Ls). For a graphical representation of this and other apparitions' aspects, refer to Figure 1 (p. 100).

During most of the 1992-93 Apparition Mars' North Pole will be tilted earthward, covering most of the Martian Northern Hemisphere mid-Winter, and Spring. Thus, astronomers can again study the regression of the North Polar Cap (NPC) and follow both Martian antarctic and arctic meteorology. This apparition should also allow careful scrutiny of the summer NPC remnant. As Mars will have an apparent diameter of over 11 arc-seconds at the northern spring equinox, this apparition should also allow careful scrutiny of the summer NPC remnant.

The Rima Tenuis.-While using a 9 -inch refractor in 1888, G. Schiaparelli noted that the North Polar Cap of Mars was divided in two parts by a dark rift or fissure. This obser-
vation was soon confirmed by Terby and Perrotin. This rift, called Rima Tenuis, was observed many times from 1901 through 1918. Records from the British Astronomical Association (B.A.A.) indicate that the Rima Tenuis has also been observed during 1933 and again in 1950.
C.F. Capen cearried out a search for the Rima Tenuis during the 1960's. Even though he used large telescopes of 16,30 and 82 inches in aperture, the search was unsuccessful. It was not until late 1979 that the Rima Tenuis appeared again. The first evidence of its return was observed by D. Troiani of Chicago, Illinois, who observed a dark notch at the south edge of the NPC near $335^{\circ}$ areographic longitude. R. Robotham, J. Dragesco, J. Beish and D. Parker observed the Rima Tenuis within days of the first observations of the notch. Later, on February 22, 1980, P. Moore and C.F. Capen observed the complete Rima Tenuis while using the Lowell Observatory's 24 -inch refractor. This rift became a regular feature during the 1980 apparition and again in 1982 and 1984.

Photographs of the Rima Tenuis have been taken by A.L.P.O. astronomers A. MacFarlane, L. Aerts, and D. Parker. However, due to the extremely low contrast and small size of this feature, we do not yet have a photograph good enough to publish.

## Observing Aids

(1) Now available from the Astronomical League is the Mars Observer's Handbook by Jeffrey D. Beish and Charles F. Capen at a new low price of $\$ 8.00$. This very important and informative book is in its second printing due to popular demand. Formerly published for The Planetary Society's "Mars Watch '88," the book was sold out and has been out of print for the past two years. Send an $\$ 8.00$ check or money order to: Astronomical League Sales, Four Klopfer Street, Pittsburgh, PA 15209.
2) Picked as one of the top twelve nontechnical astronomy books of 1989 by the Astronomical Society of the Pacific, Introduction to Observing and Photographing the Solar System, by T.A. Dobbins, D.C. Parker, and C.F. Capen contains both theoretical and observational information on Solar-System objects, with very detailed chapters on Mars, astrophotography, micromery, and so forth. There is a Forword by the A.L.P.O. founder Walter H. Haas. The book is available in hardcover for $\$ 19.95$ from Willmann-Bell, Inc., P.O. Box 35025 Richmond, VA 23235, telephone (804) 320-7016.

## Calendar of Events: MARS, 1992-93 APPARITION

Table I (p. 100) gives forecasts of Mars' appearance and phenomena for the 1992-93 Apparition. Begin observing Mars now in order to watch these predicted phenomena, and possibly unpredicted phenomena as well!

## Table 1. Predicted Martian Phenomena, 1992-93 Apparition.

| Earth Date | LS | Phenomena |
| :---: | :---: | :---: |
| 1992 | - |  |
| 23 APR | 236 | Disk diameter is now $4^{\prime \prime} .8$ (arcsec.). Maximum earthward tilt of $25^{\circ} .0$ of the Martian South Pole for this apparition. Numerous white patches possible on surface. |
| 10 MAY | 246 | Disk diameter is now 5".0. Mars crosses into celestial Northern Hemisphere. |
| 17 MAY | 251 | Mars at Perihelion, watch for dust clouds.Several "planet-encircling dust storms" reported during this Martian season. Disk diameter 5".1. |
| 17 JUN | 270 | Northern Winter/Southern Summer Solstice. Mars' north polar region covered with bright hood. North Polar Cap (NPC) should be near maximum diameter. Disk diameter only $5^{\prime \prime} .5$. Mars rises approximately 3 hours before Sun. |
| 19 JUL | 290 | Mars $6^{\prime \prime} .0, \mathrm{De}-11^{\circ} .2$ (areocentric Earth declination). Look for orographic clouds (violet filter). Orographics over the Tharsis volcanoes-W-Cloud? Low-resolution CCD imaging possible. |
| 30 Aug | 315 | De $0^{\circ}$. Disk diameter is now $7^{\prime \prime} .0$. |
| 31 Oct | 349 | De $+11^{\circ} .6$ Disk diameter is now 10".0. NPC large, hood present. High-quality micrometer measurements of NPC possible. Views of surface details better. Some photography now possible. Discrete (white) clouds and white areas should be seen. Measure latitude of North Polar Hood (NPH). |
| 21 Nov | 000 | Northern Spring/Southern Autumn Equinox. Disk diameter is now 11".8. NPH breaking up, NPC should be exposed. High-resolution CCD imaging possible. |
| 23 Nov | 001 | $\mathrm{De}+12^{\circ} .6$, Disk diameter is now 12".0. Begin high-resolution visual observations and high-quality photography. |
| 1993 |  |  |
| 03 JAN | 020 | Closest Approach to Earth at 13.6h UT, Mars diameter 14".95. |
| 07 Jan | 022 | Opposition at 22 h 37 m UT, Dec. $=+26^{\circ}, \mathrm{De}=+7^{\circ} .5$. Disk diameter is now $14^{\prime \prime} .9$. Photography and CCD imaging desired. |
| 30 Jan | 033 | $\mathrm{De}+4^{\circ} .3$. Declination $+27^{\circ} .02$ (farthest north). Disk diameter is now $13^{\prime \prime} .4$. |
| 28 Mar | 058 | Disk diameter rapidly shrinking--now $8^{\prime \prime} .0$. Northern Hemisphere Spring. Continue NPC measurements. Is North Cap fairly static or entering rapid-retreat phase? South polar regions becoming difticult to observe. Any signs of SPH? De $+8^{\circ} .3$. High- resolution CCD imaging still possible. |
| 25 APR | 071 | Mars at Aphelion, Disk diameter is now $6^{\prime \prime} .5$. $\mathrm{De}+13^{\circ} .5$. |
| 07 MAY | 076 | Disk diameter $6^{\prime \prime} .0$. N. Hemisphere late-Spring. Is NPC beginning rapid retreat? Are limb arcs increasing in frequency, intensity? Use filters! Antarctic hazes, hood? Cloud activity increases. Aphelic chill observed? Low-resolution CCD imaging possible. |
| 08 Jun | 090 | Northern Summer/Southern Winter Solstice. Orographics over the Tharsis volcanoes-W-Cloud? Disk diameter $5^{\prime \prime} .0$. De $+21^{\circ} .4$. |

Figure 1. Diagram of oppositions of Mars for 1986-2003, showing how the eccentricity of Mars' orbit affects the opposition distance between the Earth and Mars. Although oppositions of Mars occur at 25-26 month intervals, there is also a 15-17 year cycle of the oppositions themselves; note the two favorable oppositions of 1988 and 2003, for example. This cycle also affects the opposition declination of Mars. Mars has a high northern declination for its aphelic (distant) oppositions, which occur in the Earth's NorthernHemisphere Winter, and is far south for its perihelic (close) oppositions, which occur in Earfh's Northern late Summer or early Fall.


# The 1990 Western (Morning) Apparition of the Planet Venus: Visual and Photographic Observations 

By: Julius L. Benton, Jr., A.L.P.O. Venus Recorder


#### Abstract

This report summarizes visual and photographic observations of Venus for the 1990 Western (Morning) Apparition, based on data submitted by A.L.P.O. Venus Section observers in the United States, Canada, and Germany; including the instrumentation and sources of data used in obtaining those observations. Comparative studies deal with observers, instruments, and visual and photographic data. The report includes illustrations and a statistical analysis of the categories of features in the atmosphere of Venus, including cusps, cusp-caps, and cusp-bands, seen or suspected at visual wavelengths, both in integrated light and with color filters. One observer conducted ultraviolet and infrared photography. Terminator irregularities and the apparent phase are discussed, as well as results from the continuing monitoring of the dark hemisphere of Venus for the Ashen Light.


## INTRODUCTION

Observers submitted numerous, good visual and photographic observations of Venus during the 1990 Western (Morning) Apparition. The geocentric parameters of that apparition are given in Table 1 below.

Venus. Figure 2 (p. 102) illustrates the distribution of observations for each month during that apparition.

On the basis of the number of reports received, the observational coverage was excellent, with individuals initiating their programs quite early in the apparition and following through up until a month before Venus reached Superior Conjunction with the Sun. The "observing season," or observational period, was from 1990 JaN 26 through OCT 07 , with the maximum emphasis during the months of February through May (72.9 percent of the total observations). As in many previous apparitions, the greatest observational activity during 1990 was near the period when Venus was at greatest brilliancy and maximum elongation

A total of 376 observations consisting of visual drawings and photographs was received for the 1990 Apparition, supplemented by the welcome efforts of M. Gélinas of Québec, Canada to carry out several CCD, ultraviolet, and infrared (IR) photographic studies of
from the Sun
Four individuals submitted visual and photographic observations of Venus for the 1990 Apparition. These observers are listed in Table 2 (below), with their observing sites, number of observarions, and instruments used.

| Table 2. Participants in the A.L.P.O. Venus Observing Program during the 1990 Western (Morning) Apparition. |  |  |
| :---: | :---: | :---: |
| Observer | $\qquad$ Number of <br> Observing Site Observations | Telescope(s) Used |
| Benton, J.L. | Wilmington Island, GA 26 | 15.2-cm (6.0-in) Refractor |
| Gélinas, M.A. | N.D.-lle-Perrot, Qué., Canada 12 11 | $15.2-\mathrm{cm}(6.0-\mathrm{in})$ Refractor $20.3-\mathrm{cm}(8.0-\mathrm{in})$ Schmidt-Cass. |
| Graham, F. | Cleveland, OH | $22.9-\mathrm{cm}(9.0-\mathrm{in})$ Refractor |
| Niechoy, D. | Göttingen, Germany $\begin{array}{r}21 \\ 305\end{array}$ | $6.0-\mathrm{cm}(2.4-\mathrm{in})$ Retractor $20.3-\mathrm{cm}(8.0-\mathrm{in})$ Schmidt-Cass. |



Figure 2. Number of observations contributed to the A.L.P.O. Venus Section by month during the 1990 Western (Morning) Apparition.

The observers were international. Two of the four were located in the United States, although those individuals accounted for only 7.2 percent of the total observations. Indeed, one individual, D. Niechoy of Göttingen, Germany, contributed 86.7 percent of the total observations!

As for the types of telescopes used, as in the 1988-89 Western (Morning) Apparition, Schmidt-Cassegrain telescopes were popular; they accounted for 84.0 percent of the 1990 observations. This situation is unusual because more frequently "classical" designs such as the refractor and Newtonian reflector predominate. Also, 94.4 percent of the observations were made with telescopes of $15.2-\mathrm{cm}(6.0-\mathrm{in})$ aperture or greater.

In terms of atmospheric conditions, the mean Seeing was 6.9 , or "good," on the standard A.L.P.O. Seeing Scale that ranges from 0.0 for worst to 10.0 for perfect. The mean Transparency, expressed as the limiting stellar magnitude in the vicinity of Venus, was about +4.6 for the very few observations made when the planet was seen in a fairly dark sky, and thus at a relatively low altitude. Observers usually followed Venus into a daylight sky, and thus took advantage of better Seeing conditions, throughout most of 1990 .

This Recorder expresses his warmest gratitude to the four dedicated colleagues mentioned in this report who carried out observations for the A.L.P.O. Venus Section. We cordially invite observers everywhere to join, or to continue, with us in the coming observing seasons. We are continuing efforts to encourage and coordinate comprehensive studies of

Venus throughout the 1990's; with good cooperation from such groups as the British Astronomical Association, and the Vereinigung der Sternfreunde in Germany, and with others throughout the world.

## Observations of Venusian ATMOSPHERIC DETAILS

As noted in our previous Venus Reports [e.g., Benton, 1991], the methods for conducting visual studies of the somewhat vague, characteristically elusive "markings" in the atmosphere of Venus have been outlined in the appropriate Venus Section publications. [Benton 1973, 1987] We recommend that new observers of Venus study these sources as well as previous apparition reports.

Nearly all the observations used for this report were at visual wavelengths. The only exception was some CCD, ultraviolet, and infrared photography by $M$. Gélinas of Québec, Canada. Several examples of drawings and photographs appear in this report in order to aid the reader in interpreting the phenomena reported or suspected on Venus in 1990 (see Figures 5-14, pp. 107-108).

The visual and photographic data for the 1990 Apparition represented essentially all of the categories of dusky and bright markings/features on Venus, as covered in the literature cited above. [Benton 1973, 1987, 1991] Figure 3 (p. 103) summarizes the frequency with which the specific forms of markings were reported. Note that many observations showed more than one type of marking or fea-


Figure 3. Frequency of occurrence of types of markings and other features, 1990 Western (Morning) Apparition of Venus.
ture, so that totals over 100 percent are possible. Undoubtedly, there is a subjective element in the reporting of the vague markings of Venus which must affect the values in Figure 3. Nevertheless, our tentative conclusions derived from these data appear reasonable.

The dusky markings of Venus' atmosphere are quite elusive, both to the novice and to the experienced observer. Ultraviolet (UV) photographs of Venus are usually preferred to drawings in order to bring out these subtle shadings. The A.L.P.O. Venus Section actively seeks UV photographs because many features' appearances in UV are different than in visual wavelengths, particularly radial dusky patterns. However, it is interesting that during 1990 almost three-quaters ( 72.9 percent) of the drawings and other visual observations of Yenus did show shadings or markings of some kind. This was almost exactly the same situation as was encountered during the 1988-89 Western (Morning) Apparition, but not for many of the observing seasons prior to 1988-89. In the photographs taken at visual wavelengths, as well as those that were done in UV and IR by M. Gélinas, there were no indications of markings. In the photographs, Venus displayed a completely blank disk even though visual observers then reported banded, radial, irregular, and amorphous dusky markings. One important factor here is that in recent years observers have been utilizing more standard, systematic techniques with polarizing and color filters, which may have helped them to glimpse detail visually.

Most of the dusky markings that were reported were in the category of "Amorphous Dusky Markings," reported in 65.1 percent of
the observations. Other dusky atmospheric features were distributed fairly evenly between the categories of "Banded Dusky Markings" (32.0 percent) and "Irregular Dusky Markings" ( 24.3 percent), and only 0.9 percent of the observations reported "Radial Dusky Markings" in 1990.

Terminator shading was prominent during the 1990 Apparition, and was recorded in 79.4 percent of the observations, as shown in Figure 3. Unlike most of the drawings, however, the photographs seldom clearly showed terminator shading. There was the usual tendency for the terminator shading to lighten (i.e., assume a higher intensity value) as one proceeded from the terminator region toward the illuminated limb of the planet. Sometimes this gradation in brightness ended in the Bright Limb Band (see below), and frequently this terminator shading extended all the way from the northern to the southern cusp region.

The mean relative intensity for all of the dusky features reported on Venus in 1990 ranged from 7.8 to 8.0 on the A.L.P.O. Standard Relative Intensity Scale (from 0 for black shadow to 10 for the brightest possible feature).

Except for the cusp regions, bright areas or mottlings were infrequently observed for the 1990 Western (Morning) Apparition, and averaged about 8.8 in mean relative intensity. At visual wavelengths, only a small number of drawings showed these bright spots or mottlings on Venus. Moreover, no photographs at visual, UV, or IR wavelengths revealed any indication of these features.

Color-filter techniques were effectively and systematically applied to Venus during
the 1990 Western (Morning) Apparition. These gave promising results when compared with integrated-light observations. The use of Wratten and Schott color filters and variabledensity polarizers improved the overall visibility of atmospheric phenomena on Venus.

## The Bright Limb Band

In the 1990 Western (Morning) Apparition, 70.0 percent of the observations submitted described an obvious "Bright Limb Band" on the sunlit hemisphere of Venus. Of the instances when this brilliant band was recorded, the feature extended uninterrupted from cusp to cusp 62.4 percent of the time, and was broken or partially visible in the remaining 37.6 percent of the positive reports. The mean numerical intensity of the Bright Limb Band was 9.7. Its visibility was significantly enhanced by the use of color and variable-density polarizing filters.

## CUSPS, CUSP-CAPS, and Cusp-bands

The most contrasting and conspicuous features sometimes seen in the atmosphere of Venus are found at or near the planet's cusps, usually when the phase coefficient $\mathbf{k}$ [the fraction of the disk that is illuminated] lies between 0.1-0.8. These cusp-caps are occasionally bounded by dark, often diffuse, peripheral cusp-bands. Figure 4 (below) shows visibility statistics for Venus' cusp features in 1990.

When the northern and southern cusp-caps were recorded, they were often seen at the
same time. They were then as a rule equal in size, but the northern cusp-cap was usually the more conspicuous in terms of brightness. There were, though, a few instances when the southern cusp-cap was the larger and brighter. In slightly over one-third of the observations, neither cusp-cap was reported. When seen, the mean relative intensity of the cusp-caps was about 9.6 during the 1990 Apparition.

The cusp-caps were fairly frequently bordered by dusky cusp-bands with a mean relative intensity of about 7.6. Just as often, however, neither cusp-band was reported.

## CUSP EXTENSIONS

In theory, the illuminated portion of the limb of Venus should always subtend very close to $180^{\circ}$; an extent significantly larger is described as a cusp extension, and is presumably an effect of Venus' atmosphere. This is reported only when Venus has a narrow crescent phase and 85.4 percent of the observations submitted in 1990 showed absolutely no cusp extensions, with colored and polarizing filters as well as in integrated light

However, from 1990 JAN 26 through APR 02 , several reports were received of extensions of both cusps ranging from $2^{\circ}$ to $40^{\circ}$ on the average. There were even several instances when the reported extensions of both cusps joined, forming a strikingly beautiful halo encircling the entire dark hemisphere of Venus. These cusp extensions were depicted on drawings, and were enhanced by color filters and polarizers, but were wholly invisible on all photographs submitted. As expected, cusp extensions are exceedingly difficult to capture


Figure 4. Frequency of occurrence of cusp-caps, cusp-bands, and cusp-extensions. 1990 Western (Morning) Apparition of Venus. The range of $k$ (fraction of disk illuminated) was from 0.027 (1990 JaN 26) to 0.994 (1990 Oct 07).
on film, being considerably fainter than the sunlit portions of the disk.

## TERMINATOR IRREGULARITIES

The terminator of Venus is the geometric curve that separates the sunlit and dark hemispheres. Unlike the high frequency of terminator deformities reported during the 1988-89 Western (Morning) Apparition, only 38 percent of the observations in 1990 referred to an asymmetric or irregular terminator. When the terminator was not seen as a regular geometric feature, amorphous and irregular dusky markings, and to a lesser extent banded and radial dusky shadings, merged with the terminator shading and with possible reported deformities. As with other observations during this apparition, successful filter techniques probably enhanced the visibility of any terminator irregularities and associated dusky atmospheric features. Also, the phenomenon of irradiation may cause bright features adjacent to the terminator to become apparent bulges into the dark hemisphere, while dark features may appear as hollows into the sunlit hemisphere.

## ESTIMATES OF DICHOTOMY

The "Schröter Effect" on Venus, a discrepancy between the predicted and the observed dates of dichotomy (half-phase), was reported in 1990. The predicted half-phase occurs when $\mathbf{k}=0.500$, and the phase angle $\mathbf{i}$ between the Sun and the Earth as seen from Venus equals $90^{\circ}$. The observed minus predicted discrepancies for 1990 are given in Table 3 (below).
and negative Ashen Light observations of D. Niechoy, who was responsible for 86.7 percent of the total number of observations during the 1990 Apparition. Mr. Niechoy was alone in reporting any positive sightings of the Ashen Light. His data have merit also because they were nearly all made with the same instrument, magnification, and filters. When variations in these factors occur among the entire group of observers, as has been the case in past apparitions, comparisons become considerably more troublesome.

On several occasions Mr. Niechoy suspected, and in some cases was certain of, the presence of the Ashen Light while using color filters and also in integrated light against a twilight sky. There were also a few times when observers suspected that the dark hemisphere of Venus looked actually darker than the background sky, but this phenomenon is almost certainly a contrast effect.

## CONCLUSIONS

Atmospheric activity on Venus during the 1990 Western (Morning) Apparition was moderate. It is of considerable interest to compare these results with those of previous moming observing seasons, as well as with evening apparitions of the planet. Our studies of the Ashen Light, which intensified during the Pioneer Venus Orbiter project, are continuing with significant emphasis. The cooperation of individuals and organizations throughout the world in our investigations of Venus has solidified the international scope of our endeavors. Continuous, systematic, and simultaneous monitoring of the planet by regular, dedicated participants over the span of many years remains our principal goal; and we invite interested readers to join us in our commitment to gather reliable information about Venus.

## REFERENCES

Benton, Julius L., Jr. (1973). An Introduction to Observing Venus. Savannah, GA: Review Publishing Co.

## THE ASHEN LIGHT

The Ashen Light, first reported by the Italian observer G. Riccioli in 1643, is an exceedingly elusive, faint illumination of the dark hemisphere of Venus. It resembles Earthshine on the dark portion of the Moon, but the latter has a completely different origin. It is often argued that Venus must be viewed against a dark sky in order to detect the Ashen Light, but Venus is then very low in the sky and hence suffers from poor seeing and glare in contrast with the dark sky background.

Table 4 (p. 106) summarizes the positive
___ (1987). Visual Observations of
Venus: Theory and Methods (The ALPO
Venus Handbook). Savannah, GA: Review Publishing Co. . (1991). "The 1988-89 Western
(Morning) Apparition of the Planet Venus: Visual and Photographic Observations." J.A.L.P.O., 35, No. 3 (September), 116-123.
Hunten, D.M., et al., Ed. (1983). Venus.
Tucson: University of Arizona Press.
U.S. Naval Observatory. (1989). The

Astronomical Almanac for the Year
1990. Washington: U.S. Government Printing Office.

## Table 4. Ashen-Light Observations by D. Niechoy: 1990 Western (Morning) Apparition of Venus.

| Date, UT Instrument, Mag. Filter S/T AL |  |  |  |  | Date, UT Instrument, Mag. Filter S/T AL |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 |  |  |  |  | 1990 |  |  |  |  |
| JAN 26 |  |  |  |  | EEB23 |  |  |  |  |
| 11h 48m | 20.3 S-C, $51 \times$ | IL |  | S | 05h 17m | 6.0 Refr, 33x | 1 L |  | S |
| 11h 53m | 20.3 S-C, 112X | IL |  | DS | 05h 24 m | 6.0 Retr, 33x | IL |  | NS |
| 12h 01m | 20.3 S-C, 112X | RG610 | 3/3 | StS | 05h 29m | 6.0 Reir, 33x | IL | 3/3 | NS |
|  |  |  |  |  | 06h 15m | 20.3 S-C, 225X | IL | 3/3 | NS |
|  |  |  |  |  | 06h 23m | 20.3 S-C, 225X | W15 | 3/3 | NS |
| 11h 37m | 20.3 S-C, 225x |  |  | DS | 06h 31m | 20.3 S-C, 225x | W25 | 3/3 | NS |
| 11h 42 m | 20.3 S-c, 225x | RG610 | 3/4 | S | 06h 38m | 20.3 S-C, 225X | W47 | 3/3 | NS |
| 11h 49m | 20.3 S-C, 225X | W15 |  | NS | FEB24 |  |  |  |  |
| 11h 55 m | 20.3 S-C, 225× | W47 |  | S | 08h 13m | 20.3 S-C, 225x | IL | 3/3 | S |
| FEB04 |  |  |  |  | 08h 29m | 20.3 S-C, 225x | W15 | 3/3 | NS |
|  |  |  |  |  | 08h 48m | 20.3 S-C, 225X | W25 | 3/3 | NS |
| 09h 52 m | 20.3 S-C, 225x | RG610 | 3/3 | NS | 08h 50m | 20.3 S-C, 225x | W15 | 3/3 | NS |
| 09h 58m | 20.3 S-C, 225x | W15 | 3/3 | NS | 08h 57m | 20.3 S-C, 225x | W47 | 3/3 | NS |
| 10h 03m | 20.3 S-C, 225x | W47 | 3/3 | NS | 09h 03m | 20.3 S-C, 225X | W11 | 3/3 | NS |
| 10h 09m | 20.3 S-C, 225x | OG550 | 3/3 | NS | FEB 25 |  |  |  |  |
| 10h 15m | 20.3 S-C, 225× | W11 | 3/3 | NS | 08h 47m | 20.3 S-C, 170x | IL | 3/4 | NS |
| FEB 10 |  |  |  |  | 08h 51m | 20.3 S-C, 170x | W25 | 3/4 | S |
| 10h 46m | 20.3 S-C, 112x |  |  | VStS | 08h 56m | 20.3 S-C, 170X | W15 | 3/4 | NS |
| 10h 58m | 20.3 S-C, 112X | RG610 | 3/3 | NS | MAR 11 |  |  |  |  |
| FEE 17 |  |  |  |  | 10h 03m 20.3 S-C, 225X |  | IL | 3/4 | NS |
| FEB 10 F \% |  |  |  |  | 10 h 10 m | 20.3 S-C, 225x | W25 | 3/4 | S |
| 11h 04m 20.3 S-C, 225X W15 3/3 S |  |  |  |  | 10h 16m <br> 10h 25 m | 20.3 S-C, 225x | W47 | $3 / 4$ | NS |
| 11h 09m | 20.3 S-C, 225x | RG610 | 3/3 | NS |  | 20.3 S-C, 225X <br> 6.0 Refr 83x | W15 | $3 / 4$ | NS |
| 11h 18m | 20.3 S-C, 225x | BG28 | 3/3 | StS | 10 h 31 m <br> 10h 36m | $20.3 \mathrm{~S}-\mathrm{C}, 225 \times$ | RG610 | 3/4 | $\begin{aligned} & \text { NS } \\ & \text { NS } \end{aligned}$ |
| 11/h 26 m | 20.3 S-C, 112x | IL |  | StS |  | $20.3 \text { S-c, 225x }$ | GG10 | 3/4 |  |
| $11 \mathrm{~h} 33 \mathrm{~m} 20.3 \mathrm{~S}-\mathrm{C}, 225 \times$ W47 3/3 NS |  |  |  |  | MAR 30 |  |  |  |  |
| FEB21 |  |  |  |  | $\frac{\operatorname{MAR} 30}{04 \mathrm{~h} 53 \mathrm{~m}} \text { 6.0 Refr, } 33 x$ |  |  |  |  |
| 05h 24 m 6.0 Refr, $33 \times \mathrm{X}$ IL $3 / 3 \mathrm{~S}$ |  |  |  |  | 04h 58m | 6.0 Refr, $33 \times$ | IL | 3/3 |  |
| 05h 30 m | 6.0 Refr, 33x | IL | 3/3 |  |  |  |  |  |  |
| 05h 41m | 6.0 Refr, 33x | IL | 3/3 | NS | APR 01 |  |  |  |  |
| 06h 20 m | 20.3 S-C, 112X |  | 3/3 | S | 08h 35m | 20.3 S-C, 170X | IL | 3/3 | S |
| 06h 26 m | 20.3 S-C, 112X | RG610 | 3/3 | NS | 08h 45m | 20.3 S-C, 170X | W15 | 3/3 | NS |
| 06 h 32 m | 20.3 S-C, 112X | W15 | 3/3 | NS | 08h 50m | 20.3 S-C, 170X | W25 | 3/3 | NS |
| 06h 37m | 20.3 S-C, 112X | W47 | 3/3 | NS | 08h 59m | 20.3 S-C, 170X | W47 | 3/3 | NS |
| (Continued in right column.) |  |  |  |  | 09h 08m | 20.3 S-C, 170X | W11 | 3/3 | NS |
|  |  |  |  |  | 09h 14m 20.3 S-C, 170x |  | BG28 | 3/3 | NS |
| Notes for Table 4 |  |  |  |  |  |  |  |  |  |
| Instrument = Aperture in cm; Type (Refr = Refractor; S-C = Schmidt-Cassegrain); Magnification. |  |  |  |  |  |  |  |  |  |
| Filter $=$ Type of filter, where IL $=$ Integrated Light. Wratten series filters are abbreviated W. Other designations indicate Schott filters. The colors of the filters are as follows: <br> Wratten: W11 = Yellow; W15 = Yellow; W25 = Red; W47 = Blue. <br> Schott: BG28 = Blue-Green; GG10 = Yellow; OG550 = Green; RG610 = Red. |  |  |  |  |  |  |  |  |  |
| $\mathrm{S} / \mathrm{T}=$ Seeing and transparency. Seeing is on the standard A.L.P.O. scale, ranging from 0 for worst to 10 for perfect. Transparency is on a scale, ranging from 0 for worst to 5 for perfect. |  |  |  |  |  |  |  |  |  |
| AL = Ashen Light visibility as foilows: DS = Definitely Seen; NS = Nothing Seen or Suspected; S = <br> Suspected; STS = Strongly Suspected; VStS = Very Strongly Suspected. |  |  |  |  |  |  |  |  |  |

## Selected Drawings and Photographs, 1990 Western (MORNing) Apparition of Venus

Notes: Figures 5-14 are oriented with celestial south at the top and the preceding direction to the left (simple inverted views). Unless otherwise stated, Seeing is on the standard A.L.P.O. scale, ranging from 0 for worst to 10 for perfect and Transparency is on a scale, ranging from 0 for worst to 5 for perfect. Note that Mr. Niechoy's drawings are laterally reversed.

Figure 5 (right). Drawing of Venus by D. Niechoy, 1990 Fee 22, 06h 25m UT. 20.3-cm (8.0-in) Schmidt- Cassegrain, $225 \times$ W15 (yellow) Filter. Seeing $=2$, Transparency $=3$. Phase $(\mathbf{k})=0.254$. Diameter $=40^{\prime \prime} .6$. Note Ashen Light and terminator shading.

Figure 6 (below). Drawing of Venus by Marc Gélinas. 1990 MAR 08, 14h 55m-15h 18m UT. 20.3-cm (8.0-in)Schmidt-Cassegrain, 290X. W15 (yellow), W25 (red), W38(light blue) Filters. Seeing $=8$, Transparency $=+5$ (limiting magnitude). Phase $(\mathbf{k})=0.364$, estimated as $0.36 \pm .01$. Diameter $=32 " .5$.


Figure 7 (right). Photograph of Venus by Marc Gélinas 1990 MAR 08, 14 h 36 m UT $20.3-\mathrm{cm}(8.0-\mathrm{in})$ Schmidt-Cassegrain at $\mathrm{f} / 30.1 \mathrm{sec}$. on Kodak TP2415 Film with a W18A Filter (ultraviolet, but with a "red leak"). Seeing =8, Transparency $=+5$ '(limiting magnitude). Phase (k) $=0.364$. Diameter $=32^{\prime \prime} .5$. Compare with Figure 6 to the left, drawn slightly later.


Figure 8 (left). Drawing of Venus by D. Niechoy. 1990 MAR 11, 10 h 10 m UT. $20.3-\mathrm{cm}(8.0-\mathrm{in})$ Schmidt-Cassegrain, 225X. W25 (red) Filter. Seeing $=2$, Transparency $=3$. Phase $(k)=0.384$. Diameter $=$ 31".2. A very pronounced light zone is visible on the darkside limb, along with cusp extensions.

Figure 9 (right). Drawing of Venus by D. Niechoy. 1990 MAR 31, 06 h 37 m UT. $20.3-\mathrm{cm}(8.0-\mathrm{in})$ Schmidt-Cassegrain, $225 \times$. Integrated light (no filter). Seeing $=2$, Transparency $=3$. Phase $(\mathbf{k})=0.501$. Diameter $=24$ ".2. A bright limb band is evident, adjoined by two bright spots.


## Selected Drawings And Photographs, 1990 Western (MORNiNG) Apparition

 of VENUS-Continued. (See notes on p. 107)Figure 10 (right). Drawing of Venus by Marc Gélinas. 1990 APR 19, 13h $27 \mathrm{~m}-13 \mathrm{~h} 55 \mathrm{~m}$ UT. 15.2 cm ( 6.0 -in) refractor, $261 \times$. W15 (yellow), polarizing, W38 (light blue), and magenta filters. Seeing $=8$,

Transparency $=4$. Phase $(\mathbf{k})=0.592$, estimated as $0.57 \pm .01$. Diameter $=19 " .9$.


Figure 11 (left). Photograph of Venus by Marc Gélinas. 1990 APR 19, 14 h 10 m UT. $15.2-\mathrm{cm}(6.0-\mathrm{in})$ refractor, $\mathrm{f} / 68$. 1/60 sec. on HIE 2481 intrared film, W29 (deep red) Filter. Seeing $=7$, Transparency $=+4.5$ (limiting magnitude). Phase $(\mathbf{k})=0.593$, Diameter $=19$ ".9. Compare with the drawing above, made shortly before.

Figure 12 (right). Drawing of Venus by D. Niechoy. 1990 MAY 12, 09h 02m UT. 20.3-cm (8.0-in) Schmidt-Cassegrain, 112×. W25 (red) Filter. Seeing $=3$, Transparency $=2$. Phase $(\mathbf{k})=0.683$. Diameter $=16^{\prime \prime} .4$. Several dusky shadings are visible.


Figure 13 (left). Drawing of Venus by D. Niechoy. 1990 JUN 16, 07h 12m UT. $20.3-\mathrm{cm}$ (8.0-in) Schmidt-Cassegrain, 112×. W25 (red) Filter Seeing $=2$, Transparency $=3$.
Phase $(k)=0.796$. Diameter $=13^{\prime \prime} .2$.
Note distinct bright area on the IAU east limb.

Figure 14 (right). Drawing of Venus by D. Niechoy. 1990 AUG 25, 06 h 45 m UT. 20.3-cm (8.0-in) Schmidt-Cassegrain, $225 \times . W 15$ (yellow) Filter. Seeing $=1$, Transparency $=2$.

Phase $(\mathbf{k})=0.950$. Diameter $=10^{\prime \prime} .4$.
"I" indicates a possible dusky band; "Il" a dusky spot.


## Cosmocon'92: A Photographic Report

The Association of Lunar and Planetary Observers recently held its forty-second convention, on the campus of San Jose State University in San Jose, California, on July 13-18, 1992. We were not alone because the same meeting included the annual conventions of the Astronomical League and the Western Amateur Astronomers, making COSMOCON'92 a truly national amateur meeting. We here extend our thanks to the Astronomical Association of Northern California, who sponsored the event.

Such meetings feature a variety of activities. As usual, there were several paper sessions. A.L.P.O. Members speaking on SolarSystem topics were well-represented here, as shown in the listing to the upper right. Their papers will appear in the forthcoming convention Proceedings.

Such annual meetings also provide the occasion where the participating groups make their annual awards. The A.L.P.O. can be proud that three of its members received such awards in 1992: (1) Phillip W. Budine was the 1992 recipient of the A.L.P.O.'s own Walter H. Haas Observing Award; (2) Donald C. Parker received the 1992 Leslie C. Peltier Award of the Astronomical League; and (3) John Westfall was presented with the G. Bruce Blair Award for achievement in amateur astronomy (for 1991, presented in 1992). These persons, with their awards, are shown in Figures 15 and 16 (right and below, respectively).

Then, there are the Business Meetings of the groups involved. These included the organizational meeting of Region X of the Astronomical League, including California, Nevada, Arizona, and Hawaii. The Astronomical League and the Western Amateur Astronomers also had their meetings. Likewise, the A.L.P.O. held a Business Meeting, which is described in the minutes that follow this

## A.L.P.O. Papers at Cosmocon'92-

Julius L. Benton, Jr.
Saturn's Ring System: What to Observe Phillip W. Budine

The South Temperate Belt Fade and Related Events on Jupiter
José Olivarez
Highlights of Recent Activity on Jupiter
Donald C. Parker and Richard Berry Lunar and Planetary Imaging with a Small CCD Camera
Richard W. Schmude, Jr.
Photoelectric Photometry of Uranus in Early 1992: Preliminary Results
John Westfall
The Coming Public Transits of Mercury and Venus
All of the Above (and others) A.L.P.O. Observing Workshop


Figure 15. Phillip W. Budine (left) receiving the A.L.P.O. Walter H. Haas Observing Award from José Olivarez. (Unless otherwise stated, the photographs in this report were taken by Phillip S. Houston and were contributed by José Olivarez.)

Figure 16. The gentleman to the left is Donald C. Parker, holding the Astronomical League's Leslie C. Peltier award, which he received for 1992. To his right is his wife, Maureen. To Dr. Parker's left is John Westfall, holding the Western Amateur Astronomer's G. Bruce Blair Award for 1991. To Dr. Westfall's left is his wife, Elizabeth.


Figure 17. The 1992 A.L.P.O. Business Meeting in San Jose, California. Facing the camera, from left to right, are José Olivarez*, Harry Jamieson*, Donald Parker*, Phillip Budine*, Richard Schmude, John Westfall* (standing), and Elizabeth Westfall.* (* indicates an A.L.P.O. Board member).

report. Above (Figure 17) is a view of the 1992 A.L.P.O. Business Meeting.

COSMOCON'92 was noteworthy for its field trips, which included one to the nearby NASA Ames Research Center, home of the Kuiper Airborne Observatory (KAO). Unfortunately the KAO was indeed airborne when our group visited the Center, but we could console ourselves with visits to four groundbased observatories, three of which had the large refractors so beloved of lunar and planetary observers. First was Lick Observatory, in the mountains east of San Jose, home of the 36 -inch ( $91-\mathrm{cm}$ ) Alvan Clark refractor and the 120 -inch (3-meter) Shane reflector. The next evening saw a trip to Chabot Observatory in Oakland, housing a 20 -inch ( $51-\mathrm{cm}$ ) Brashear and an 8 -inch ( $20-\mathrm{cm}$ ) Alvan Clark refractor. Then, many of those attending the convention learned for the first time that a 16 -inch (41$\mathrm{cm})$ Alvan Clark refractor was housed only a few miles away, at Ricard Memorial Observatory in Santa Clara, restored to working order largely by student efforts. (See Figure 18 to the right.)

The final field trip was to an amateur-built observatory at Fremont Peak State Park south of San Jose, featuring a 30 -inch ( $76-\mathrm{cm}$ ) Newtonian reflector, shown in Figure 19 (below). Perhaps 20 amateurs also brought their own telescopes to Fremont Peak, with apertures ranging up to 24 inches ( 61 cm ), so nobody had to wait long in line before seeing Saturn, Uranus, the Moon, or (for those who like them) deep-sky objects as well.

Add to all the above the "Star-B-Que" dinner at Fremont Peak, the traditional Banquet, and notable guest speakers such as Carolyn Shoemaker ("Comets, Craters and Catastrophes"), Don Osterbrock ("The Pauper and the Prince: George Willis Ritchey, George Ellery Hale and

Figure 18. The 16 -inch ( $41-\mathrm{cm}$ ) Alvan Clark refractor at Ricard Memorial Observatory at the University of Santa Clara, in Santa Clara, California. (Photograph by John Westfall)



Figure 19. The 30 -inch ( $76-\mathrm{cm}$ ) Newtonian reflecting telescope at Fremont Peak Observatory south of San Jose, California. Note the large observing floor and slide-off roof, allowing groups easy access to the sky. (Photograph by John Westfall)

Big American Telescopes"), Tom Thompson ("Venus-Magellan Science Discoveries"), George Textor ("Voyager: The Incredible Journey"), and Roger Sinnott

# Minutes of the 1992 A.L.P.O. Board Meeting, San Jose, California, July 16, 1992 

Minutes taken by: Elizabeth W. Westfall, A.L.P.O. Board Secretary

The Annual Board Meeting of the Association of Lunar and Planetary Observers for 1992 was called to order on July 16, at 4:10 PM PDT. Six of the seven Board members were present-Phillip Budine, Harry Jamieson, José Olivarez, Donald Parker, Elizabeth Westfall, and John Westfall. Approximately twelve A.L.P.O. members and staff who were not Board members were also present. Such persons attend in a nonvoting capacity, but are always welcome at our meetings for the valuable input that they supply.

## Old Business

1. Financial Report.-The total balance in the three A.L.P.O. bank checking accounts (Heber Springs, San Francisco, and Las Cruces) was $\$ 5692$. The amount owed to the Executive Director, chiefly for postage and photocopying expenses, was $\$ 66$ (he bills the Association for such costs at the end of each year)
2. Staff Changes.-It was announced that Paul Mackal (Jupiter Section) and Jim Phillips (Lunar Section) had relinquished their Recorderships. Harry Jamieson had replaced Jim Phillips as Acting Recorder of the Lunar Dome Survey.
3. The A.L.P.O. Journal.-There were 608 subscribers for the July, 1992, issue; 78 percent lived in the United States and 22 percent elsewhere. The costs for the previous issue, with 622 subscribers, were $\$ 499$ for domestic postage, $\$ 147$ for foreign mailing, $\$ 98$ for mailing services and $\$ 929$ for printing. This amounted to $\$ 2.69$ per issue per subscription, or $\$ 10.76$ per year. This figure does not include envelopes, renewal notices, and other services of the Association. Since the last Board Meeting, we had published four quarterly issues, each with 48 pages.
4. Solar System Ephemeris.-About 100 copies of the 1992 Edition had been distributed; 17 were complimentary copies and the rest were sold at a price of $\$ 6.00$ per issue for North American purchasers and $\$ 8.50$ for those in other countries. The 1992 Edition had 122 pages. The 1993 Edition should be available in November, 1992. Mr. Mark Davis is generously handling production and distribution. John Westfall, the Ephemeris Editor, pointed out the need for assistance in the computations for this publication, particularly as users have requested additional tables.
5. Foreign Membership Fund.-This fund is provided by voluntary contributions and is administered by John Westfall with the intention of providing A.L.P.O. memberships to deserving but needy amateurs. We expect the recipi-
ents to participate in A.L.P.O. observing programs. Over the previous year $\$ 90$ had been contributed and $\$ 112$ expended for seven 1 year foreign memberships, leaving a balance of $\$ 20$ as of July 11, 1992.
6. International Solar System Observers Fund (ISSOF).-This fund is supported by contributions of money, equipment, and supplies, and is administered by Paul H. Bock, Jr As of May 24, 1992, there were 11 requests from as many countries, 3 of which had been at least partly fulfilled. Six items remain on inventory. Donors of cash or goods were T. Aranda, P.H. Bock, J. Bryan, A. Chalable, L Deland, R. Goff, J. Griesé, A.L. Malmed, L Netzler, E. Nussbaum, O. Piechowski, P. Rasmussen, and N. Weismann. It was pointed out that the A.L.P.O. has received favorable publicity based on this program, including letters of appreciation in Sky \& Telescope.
7. Membership Trends.-Recent A.L.P.O membership trends are shown by the table below:

|  | Issue | No. of Subscribers |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Vol. . No. | Date | U.S.A. | Abroad | Total |
| 35, 2 | 1991 June | 476 | 127 | 603 |
| 35, 3 | Oct. | 467 | 129 | 596 |
| 35, 4 | Dec. | 433 | 119 | 552 |
| 36, 1 | 1992 Mar. | 488 | 134 | 622 |
| 36.2 | July | 476 | 132 | 608 |
| 4-year | change | 0 | +5 | +5 |

1. Future Meetings.-At the time of the meeting, we had four possible sites and times for future meetings

- Meet by ourselves at Roper Mountain Science Center, Greenville, South Carolina (firm invitation; date open). We plan to consider this at our 1993 Meeting as a likely possibility for the 1994 Meeting.
- Meet by ourselves at the Omnisphere and Science Center, Wichita, Kansas (firm invitation, date open). A motion to make this our 1995 meeting site was voted on and passed. The Astronomical League was invited to join the A.L.P.O. at that meeting, the dates for which remain to be decided
- Meet by ourselves in Las Cruces, New Mexico in 1993. This was voted on and passed (For further information, see our "A.L.P.O. Affairs" section on page 140.)
- Meet with the Astronomical League in Madison, Wisconsin, on July 29-August 1: 1993. Due to the adoption of the Las Cruces meeting site, this altemative was not considered.
- The Astronomical League President mentioned the possibility of a joint A.L.P.O.-A.L. 50th Anniversary meeting in Philadelphia in 1997. It was proposed to discuss this proposal further at one or more future meetings.

2. Staff Confirmation.-Mr. Harry D. Jamieson was confirmed as permanent Recorder of the Lunar Dome Survey.
3. Instrument Section.-In response to suggestions by Harry Jamieson and Kent Volkmer, a motion to establish an Instrument Section on a provisional basis was moved, voted on and passed. Mr. Michael Mattei was appointed as Acting Recorder of the new Section. The goals of the Section are to provide information on telescopes and their selection, to provide "Consumer Reports," to test members' optics, and possibly correct deficient optics at cost. It was recognized that, before the new Section can start the last two activities, questions regarding shipping and other expenses and liability will need to be addressed.
4. A.L.P.O. Staff Guidelines.-In response to the fact that no written guidelines exist that describe the functions and obligations of A.L.P.O. staff, Mr. Harry Jamieson proposed the "A.L.P.O. Staff Guidelines" that are given in an Appendix at the end of these minutes. These guidelines were adopted, subject to review and modification by the A.L.P.O. Board. We welcome comments and suggestions by the A.L.P.O. membership on these Guidelines.
5. Other New Business: Membership Size.-The A.L.P.O. membership is now approximately 600 ; two years ago it was about 700. There was discussion about reasons for the drop and ways to counteract it. It was noted that most of the A.L.P.O. members (perhaps 85 percent) do not regularly submit observations to the Sections, but that there are many persons who do submit observations who are not A.L.P.O. members. The Board recommends that efforts be made to recruit members from those active observers who do not now belong.
6. Other New Business: Proposed Aurora Section.-Mr. Richard Schmude informally proposed the formation of an A.L.P.O. Aurora Section. The B.A.A. has long had such a Section, and that it might attract younger people to participate, due to its modest instrument requirements. There was a consensus that this was desirable but no action can be taken until an Acting Recorder can be selected.
7. Other New Business: A.L.-A.L.P.O. Pub-lications.-Mr. Jim Fox, the Astronomical League President, invited the A.L.P.O. to work with his organization to develop educational programs and publications. The A.L.P.O. Board was enthusiastic about this opportunity to train new lunar and planetary observers and noted the value of the present Astronomical League publications on such topics as eclipses, Mars, comets, and meteors.

There being no further business, the Meeting was adjourned at 5:20 PM PDT.

## Appendix:

## A.L.P.O. STAFF GUIDELINES

By: Harry D. Jamieson

The A.L.P.O. has always suffered from having no clearly defined guidelines and enforced code of ethics and performance for its staff members. Unethical or non-performing staff members have all too often retained their positions for years after any ordinary business concern would have dismissed them. The code being offered below is based upon the contemporary standards of our society (as I see them) and what I hope everyone will agree is enlightened self-interest. It also stresses service to our membership, which is to say, our customer base

1. Staff members should not advertise for sale, or accept money for, handbooks or other items which do not yet exist
2. Staff members should take all reasonable care to acknowledge promptly the work of their observers, both personally and (where the work deserves publication) in the pages of the Journal. it is also recognized that staff members should expect to receive stamped self-addressed envelopes from persons writing to them.
3. Staff members should submit regular and timely reports covering the work of their Sections at intervals appropriate for them (e.g., within 180 days of the end of an apparition).
4. Staff members should attempt to promote the A.L.P.O. and the work of their Sections wherever possible. This need should be obvious, but I have seen articles in the major magazines by staft members which do not mention the A.L.P.O. at all.
5. Staff members should attempt to write their articles using language which invites rather than intimidates the reader. It should certainly be possible to do this without sacrificing the scientific values of the article. Indeed, the article is more valuable if more people read it.
6. Correspondence should be answered within three weeks of receipt.
7. Recorders shouid attend A.L.P.O. conventions at least once every three years.
8. Recorders should make every effort to standardize observing methods and reporting forms along with illustrations submitted for publication.
9. Each Recorder should maintain well-organized files and pass them along to his or her successor upon resigning.
10. All Section publications should maintain proper standards in terms of content, English, and format.

The above points are not intended to be comprehensive, but rather to be a starting point for discussions which I hope will lead to the adoption of some rules that we can all see the need for.

# Getting Started: Sketching Full-Disc Drawings of Jupiter 

By: José Olivarez, A.L.P.O. Jupiter Recorder

## INTRODUCTION

Full-disc sketches of Jupiter are scientifically useful because they depict the changing global look of Jupiter over time and because they can show gross changes at a glance, such as a faded belt or the appearance of a new bright or dark marking. They also serve as permanent records of the changes in largescale or long-enduring features such as the Great Red Spot and the STB (South Temperate Belt) Ovals "BC", "DE", and "FA".

Full-disc drawings of Jupiter have been made for centuries, and have become widely used for the last hundred years. By convention, they are now drawn on elliptical discs that are $2 \cdot 1 / 2$ inches in equatorial diameter and with an oblateness that is commensurate with the polar flattening of Jupiter. Finished, blackbackground Jovian disc drawing forms of the proper oblateness are available at low cost from the A.L.P.O. Jupiter Recorders.* If you would like to try your skill at sketching Jupiter, acquire a set of these discs and follow the instructions below.

## Drawing Materials Needed

Although planetary sketches can be done on practically any type of paper, it is best to use comparatively smooth paper which is as white as possible. Regular duplicating paper meets these conditions sufficiently and may be used for sketching. As an example, the A.L.P.O. Jupiter Recording Forms are printed on everyday duplicating paper.

However, ordinary hard-lead pencils such as the common \#2's are not ideal for sketching. Draftspersons use "drafting pencils" which come in a variety of grades and can be obtained at drafting or art supply stores. These pencils are available in grades ranging from hard to soft, but the soft-lead pencils are best for sketching planetary surfaces. These soft pencils are available in grades ranging from 2 B to 6 B . They produce an even tone and consistent texture that can be easily modulated from light to dark shades by varying the pressure put upon them. These pencils must be sharpened with a small hand-held sharpener because the office hand-crank type of sharpener will invariably break off the soft leads. Also, if one desires an eraser, the kneaded rubber eraser is best. Available at art supply stores, this eraser is malleable and can be shaped to a point for erasing small areas on a sketch.

## The Method of Making FullDISC DRAWINGS OF JUPITER

While sketching Jupiter's full disc, you have to work rapidly because the planet's rotation will shift the cloud features across its central meridian a full three degrees in just five minutes! The direction of motion will be from right to left in a normally inverted telescopic view with south at the top. [i.e., in a telescope having an even number of reflecting surfaces (e.g., 0 or 2) used in the Northern Hemisphere. With most instruments, using a star diagonal will reverse the image and make the drawing more difficult to interpret. Ed.]

The following four-step method of sketching Jupiter is illustrated by Figures 20-23, which were prepared by the planetary artist Mark S. Daniels. The actual features depicted on these discs are fictitious but are typical of real features observed on Jupiter in 1983.

Step 1 (Figure 20 below).—Lightly pencil in the major dark belts in their correct thicknesses and indicate their order of intensity. Then, be sure to check that the belts are correctly spaced and that they are parallel to each other and to Jupiter's equator. To best approximate the above, compare their placement and widths to each other and to an imaginary line dividing the disc in half at the equator. [Note that the equator and belts will appear slightly curved when the Earth is north or south of the planet's equator. Ed.]


Figure 20. Step One in preparing a full-disc drawing of Jupiter. The positions and intensities of the major belts have been drawn. The belt labels and the dashed equator are informative only and would not be on the actual drawing. The labels use standard Jovian nomenclature.

[^0]Step 2 (Figure 21 below).-Next, add the fainter belts and the general aspects of the main belts, such as a possible double NEB or SEB (North or South Equatorial Belt). Depict the extent of the polar shading towards the belts (North and South Polar Regions).


Figure 21. Step Two in preparing a full-disc drawing of Jupiter. The fainter belts and the North and South polar Regions have been added, along with the north and south components of the main belts.

Step 3 (Figure 22 below).-Now, work rapidly and place the finer details in the belts and zones. At the beginning of this step, note down the time to one-minute accuracy and keep the time spent on this step and on Step Four to at most about five minutes to minimize distortion due to the planet's rotation.

As you enter the fine details, constantly recheck their positions in relation to other main features in order to ensure accuracy in their placement. Bright areas with ill-defined outlines or little contrast with their surroundings may be outlined by dashed lines. Use a kneaded rubber eraser to pick out light areas in the belts. [This would also be a good time to draw any satellites near the limb or in transit, or any satellite shadows on the disc. Ed.]


Figure 22. Step Three in preparing a full-disc drawing of Jupiter. Details have been added to the dark belts and light zones, such as diagonal festoons in the Equatorial Zone and bright ovals in the Southern (top) Hemisphere.

Step Four (Figure 23 below).-Make a final check on your placement of detail, allowing for rotation, and record the time of completion. Now, record (again to one-minute accuracy) the mean time between the beginning of Step Three and the end of Step Four. Finish the sketch by shading the belts and prominent features to their respective intensities. Use an artist's stump [a pencil-like pointed device that is used for smoothing shaded areas. Ed.] to add Jupiter's limb shading and to smooth out the belts or other dark features in order to make them appear more natural.


Figure 23. Step Four, a completed full-disc drawing of Jupiter. The shading of dark areas has been smoothed, positions checked, fine detail added where necessary, and the limb darkening drawn.

## Notes by Editor:

The drawing methods described above are general and may be used for the other major planets; the chief difference is that one doesn't have to hurry so much for Mercury, Venus, and Mars!

For one's drawing to have scientific value, it is necessary to record all pertinent background information (Haas, 1990).

There are several "refinements" to the basic drawing methods. These include "strip sketches" which show a large longitude range on the planet, or detailed sketches of only part of the disc. Some persons preter to copy their original drawing indoors immediately after observing; not to change any details (not! legitimate), but to make the drawing more presentable in appearance.

Finally, the artist may try a colored drawing; but this is hard to do at the telescope, particularly in a hurry. An easier and more accurate substitute is to make separate drawings through different color filters, although again this is difficult given the time constraints. For information on this and other special techniques, see Dobbins et al. (1988).

Dobbins, T.; Capen, C.F.; and Parker, D.C.
(1988). Introduction to Observing and

Photographing the Solar System. Richmond,
VA: Willmann-Bell.
Haas, W.H. (1990). "Getting Started: Recording Your Solar System Observations." J.A.L.P.O., 34, No. 4 (November), pp. 177-179.

# Diffuse Luminous Objects Having Angular Velocities Similar to Meteors 

By: John S. Gallagher, 40 New St., Spotswood, NJ 08884


#### Abstract

Meteor observers often report strange objects or occurrences in the sky above as they scan for Nature's celestial fireworks. The most common type of object reported to the Meteors Section is diffuse, luminous objects; phenomena which possess angular velocities similar to those of meteors, but which appear much larger than the normal streak associated with most meteoric phenomena.

The author reports on personal sightings of these objects and his resulting investigation into their possible source.


Diffuse luminous objects moving at angular velocities similar to those of meteors were observed during over 200 hours of meteor watching in 1991. They fell in three broad categories; arcs, patches, and "meteors" similar in appearance to comet comas. [1] Though I at first dismissed the possibility of their being related to meteors, I reconsidered this relation after eliminating other possible causes such as reflections from aircraft lights and tricks of vision. Their meteor-like behavior suggested that perhaps these events might be caused by clouds of exceedingly small meteoroids, visible only because of their numbers and compact grouping. [2] Because such a formation would be unlikely to be maintained long in space, it appeared necessary that the particles involved must have maintained some weak physical contact until just prior to becoming visible. Perhaps some type of "cosmic dust bunny," disrupted by air resistance, might be the cause of these events.

This idea remained conjectural, and was not followed up with recorded observations, until I recalled and reread an article in Sky \& Telescope [3] regarding the theory, proposed by Louis A. Frank (University of Iowa), that the Earth might be under bombardment by va-por-cloud remnants of very small comets, disrupted by gravitational stresses just prior to striking our atmosphere. This theory was suggested by satellite observations of upper atmosphere ultraviolet emissions in which transient "holes" of the order of 50 km in diameter appeared. It was proposed that these "holes" are due to absorption of the ultraviolet emissions by water vapor in comet cloud remnants positioned between the satellite and the emitting region of the atmosphere.

Considering the possibility that the luminous events might be due to dust released from such bodies, I began recording thun and also contacted Dr. Frank. He encouraged continued observations and asked to be kept informed, as the sightings could be important. We agreed that additional observations from more observers would be beneficial in terms of information and credibility.

One of the research papers that I received from Dr. Frank concerned "anomalous optical images" acquired by a sounding rocket in-
volved in an unrelated experiment. [4] These images, from sources at apparent altitudes between 31 and 179 km , resemble events that I have recorded visually. Their photometric and very-low frequency radio signatures could also be due to infalling clouds of meteoritic particles. Experiments to date in simulating the effects of the proposed remnants, and in imaging the parent bodies prior to disruption, have lent support to the theory. Among other proposed experiments is one designed to detect the impact of such bodies on the night side of the Moon.

Persons interested in the visual observing project may send reports of diffuse objects to the A.L.P.O. Meteors Section Recorder. The reports should be kept separate from "normal" meteor reports. Include as much information as is prudently possible regarding shape, dimension in degrees, angular velocity, position, direction, and so forth. Also report the beginning and ending times of all observing sessions, even when nothing is seen, so that the rate of such events can be determined. Brightness estimates are difficult because these are extended objects. I simply estimate that a given object has the same "visual impact" as a meteor of " $x$ " magnitude. For the present, please categorize events by the following provisional classifications:
> I. Arc Segments or Bars. These have varying degrees of curvature; they may be uniformly bright or contain knots of greater luminosity; they vary from roughly $4^{\circ}$ to $30^{\circ}$ in length and $0^{\circ} .25$ to $2^{\circ}$ in thickness.
> II. Others. Any other diffuse shape, usual- ly circular or oval, from $0^{\circ} .5$ to $4^{\circ}$ in diameter.
III. Intermediate-Class Objects. These objects are from approximately $0^{\circ} .1$ to $0^{\circ} .5$ in diameter and resemble "fuzzy" meteors (see [1]). The "meteor" itself, but not its train, if any, has the appearance of a comet's coma (with or without a nucleus).
Detection rates thus far have been approximately 1 event per 5 hours, with increased activity noted in early February and again on April 1st, 1992, when rates increased to 1 event per hour.

I will be happy to send copies of the research papers upon request.

## FOOTNOTES

1. Report in Meteor News, No. 96 (Jan., 1992), p. 8 (courtesy of C. Smith from Journal of Rad. and Nuc. Chemistry, 114, No. 2, pp. 345-349) of the fall of a $60-\mathrm{cm}$ ice meteor near Wuxi, China on April 11, 1983. It was said of this object that "some chemical concentrations are similar to Type L chondrites."
2. A possibly related event, though consisting of coarser and fewer particles than is as-
sumed herein, was reported in JA.L.P.O., 36, No. 1 (March, 1992), p. 16 ("Meteors Section News"). John King of Honolulu, Hawaii reported a "swarm of meteors," 12 to 15 in number, ". . at the limit of visibility and . . running parallel . . in a band 1.5 to 2 degrees wide . . and 2 to 3 degrees in length."
3. Washburn, Mark. "The Waters Above, the Storm Below." Sky \& Telescope, 76, No. 6 (Dec., 1988), pp. 628-630.
4. Ya Qi Li et al. "Anomalous Optical Events Detected by Rocket-Borne Sensor in the WIPP Campaign." J. Geophys. Res., 96, No. A2 (Feb. 1, 1991), pp. 1315-1326.

## Meteors Section News

By: Robert D. Lunsford, A.L.P.O. Meteors Recorder

Table 1. Recent A.L.P.O. Meteor Observations.

| UT Date | Observer and Location | Universal Time | Number and Type of Meteors Seen* | Comments* ${ }^{(+N}=$ Limiting Magnitude) |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{1991}{\text { Aug } 05}$ |  |  |  |  |
|  | Carl Hergenrother, NJ | 07:45-08:30 | 3 PER, 3 SPO | +4.8 |
| 06 | " " " | 07:10-08:00 | $2 \mathrm{PER}, 13 \mathrm{SPO}$ | +5.4 |
| 08 | " " " | 06:15-07:00 | $1 \mathrm{PER}, 5 \mathrm{SPO}$ | +5.3 |
|  | " " | 07:10-08:00 | $9 \mathrm{PER}, 15 \mathrm{SPO}$ | +5.3 |
| 11 | " " " | 07:30-08:15 | 8 PER, 5 SPO | +5.4 |
| Dec 1 | Robert Hays, IL | $\begin{aligned} & \text { 05:50-06:50 } \\ & 06: 50-07: 50 \end{aligned}$ | 24 GEM, 1 ORS, 6 SPO <br> 14 GEM, 1 HYD, 6 SPO | $\begin{aligned} & +5.9 \\ & +6.0 \end{aligned}$ |
| 1992 |  |  |  |  |
| JAN 04 | Michael Morrow, HI John King, HI | $\begin{aligned} & 08: 00-12: 00 \\ & 08: 10-12: 00 \end{aligned}$ | $\begin{aligned} & 5 \mathrm{SPO} \\ & 3 \mathrm{SPO} \end{aligned}$ | $+5.0 ; 65 \%$ cloudy <br> $+5.3 ; 80 \%$ cloudy |
| Feb | Michael Morrow, HI Phyllis Eide, HI | $\begin{aligned} & 09: 00-11: 30 \\ & 09: 30-11: 30 \end{aligned}$ | $\begin{aligned} & 5 \mathrm{SPO} \\ & 3 \mathrm{SPO} \end{aligned}$ | $\begin{aligned} & +5.2 ; 10 \% \text { cloudy } \\ & +5.0 ; 10 \% \text { cloudy } \end{aligned}$ |
|  | John King, HI | 09:00-11:00 | None Seen | +5.0; 90\% cloudy |
|  | Michael Morrow, H Phyllis Eide, HI | $\begin{aligned} & 05: 30-10: 00 \\ & 06: 12-08: 00 \end{aligned}$ | $\begin{aligned} & 1 \mathrm{SPO} \\ & 1 \mathrm{SPO} \end{aligned}$ | $\begin{aligned} & +5.0 ; 50 \% \text { cloudy } \\ & +5.0 ; 50 \% \text { cloudy } \end{aligned}$ |
|  | Phyllis Eide, H! <br> Michael Morrow, HI | $\begin{aligned} & 06: 00-07: 00 \\ & 06: 00-07: 00 \end{aligned}$ | $\begin{aligned} & 1 \mathrm{SPO} \\ & 1 \mathrm{SLE} \end{aligned}$ | $\begin{aligned} & +4.5 ; 50 \% \text { cloudy } \\ & +5.0 ; 60 \% \text { cloudy } \end{aligned}$ |
|  | Phyllis Eide, HI Michael Morrow, H | $\begin{aligned} & 09: 30-11: 00 \\ & 09: 30-11: 00 \end{aligned}$ | $\begin{aligned} & 1 \mathrm{SPO} \\ & 1 \mathrm{VIR} \end{aligned}$ | $\begin{aligned} & +4.8 ; 75 \% \text { cloudy } \\ & +5.0 ; 60 \% \text { cloudy } \end{aligned}$ |
| MAR | Phyllis Eide, HI John King, HI Michael Morrow, H | $\begin{aligned} & 07: 00-10: 00 \\ & 07: 00-10: 00 \\ & 07: 00-10: 00 \end{aligned}$ | 3 SPO <br> None Seen <br> None Seen | $\begin{aligned} & +4.5 ; 50 \% \text { cloudy } \\ & +5.3 ; 60 \% \text { cloudy } \\ & +5.0 ; 50 \% \text { cloudy } \end{aligned}$ |
|  | Michael Morrow, HI Phyllis Eide, HI | $\begin{aligned} & \text { 06:30-08:30 } \\ & \text { 06:45-08:30 } \end{aligned}$ | $\begin{aligned} & 2 \text { VIR, } 6 \text { SPO } \\ & 2 \text { SPO } \end{aligned}$ | $\begin{aligned} & +4.8: 20 \% \text { cloudy } \\ & +5.0 \end{aligned}$ |
|  | Phyllis Eide, HI | 08:15-11:30 | 11 SPO | +6.0 |
| Apa | John Gallagher, NJ | 05:30-08:13 | 11 SPO | +7.0 |
|  | " " " | 07:35-08:40 | 3 SPO | +6.4; 10\% cloudy |
|  | George Zay, CA Phyllis Eide, HI | $\begin{aligned} & 03: 08 \cdot 04: 56 \\ & 09: 30-11: 30 \end{aligned}$ | $\begin{aligned} & 1 \mathrm{VIR}, 6 \mathrm{SPO} \\ & 2 \mathrm{SPO} \end{aligned}$ | $\begin{aligned} & +5.8 \\ & +5.0 ; 20 \% \text { cloudy } \end{aligned}$ |
|  | Michael Morrow, HI | 09:30-11:30 | 5 SPO | +5.0; $20 \%$ cloudy |
|  | Michael Morrow, HI | 08:15-11:30 | 4 SPO | +6.0; 10\% cloudy |
|  | Phyllis Eide, HI | 09:00-11.30 | 4 SPO | +5.8; $10 \%$ cloudy |

Table 1 continued on pp.117-118 with notes on p. 118

Table 1-Continued.



[^1]
# An Understudied Crater in Nevada 

By: Harry D. Jamieson


#### Abstract

This article reports on a visit to a little-known possible meteorite crater in Nye County, Nevada on July 11, 1992, and is accompanied by photographs of the feature.


Early this summer, John E. Westfall accidentally came across a topographic quadrangle map of part of Nye County, Nevada enticingly titled "Meteorite Crater". [1; a section of the map is reproduced below in Figure 24] A search of the geological literature yielded only one further reference to this feature. [2] It is surprising that this feature has received so little study or notice.

Apparently discovered in the early 1920's by Ralph Irwin of Duckwater, Nevada, studies of this crater (which I shall now call Irwin Crater) have not revealed its origin. At John Westfall's suggestion, I visited this feature on July 11, 1992, while enroute to Cosmocon'92.

Irwin Crater lies on a gentle alluvial slope with the Railroad Valley to its east and the Pancake Range to its west, at coordinates $115^{\circ}$ $40^{\prime} 32^{\prime \prime} \mathrm{W}, 38^{\circ} 43^{\prime} 16^{\prime \prime} \mathrm{N}$ (ECN coordinates $+1157,387$ ). The depression is 225 feet ( 69 m ) wide and $10-15$ feet ( $3-5 \mathrm{~m}$ ) deep. It is circular except where the western (uphill) rim has been eroded away. Runoff from a gully terminating there has deposited at least 25 feet ( 8 m ) of spongy sediment upon the floor of the crater, making any search for possible meteoritic material difficult. The rim is not raised above the outside terrain; and the crater's interior has about the same coloring and sagebrush vegetation as its surroundings, making the crater difficult to see from a distance (Figure 26, p. 120).

A hole in the center of the crater, dug by Mr. Irwin and his brother some 70 years ago, is still there, complete with fragments of the ladder that they-or some-one-used to get to the bottom in order to search for meteorite fragments (Figure 27, p. 120). None were ever found. Later attempts to find fragments with World War-II mine detectors and Alnico magnets were also fruitless. However, the authors of Reference [2] are certain that this feature is not a volcanic crater or caldera, as there is no evidence of thermal action or a runoff channel. Perhaps the crater was formed by the impact of a non-metallic object, such as a tiny ball of ice and rock (a mini-comet?), which would not leave many fragments. Clearly, more study of this feature is needed.

Persons interested in visiting Irwin Crater will find it along a
little-traveled dirt road some 11 miles ( 18 km ) west of Currant, Nevada, at the junction of U.S. Highway 6 and State Route 379. Go west from Currant on U.S. 6 to a point about 100 feet ( 30 m ) east of mile marker 103 (known locally as "the second curve"). From there, follow a dirt road northwest for about 2.75 miles ( 4.4 km ), where you will come to a place where the road splits in several directions. Go north-northeast about 7 miles (11 km ) until you reach the east-west road that runs by the crater. At this point, go about 3,300 feet ( 1000 m ) west.

These dirt roads have a high crown and pot-holes in places; and I recommend the use of an off-road vehicle, although I got in and out with my Mazda 323. The short east-west road that runs by the crater is not easily seen from the north-south road because of a high shoulder, which is another reason to use a vehicle that places you high above the road, and I drove past it the first time. Figure 25 (p. 120) shows a view of the Pancake Range to the magnetic west of the final intersection, and should be helpful in finding the turnoff. [Magnetic west is approximately $14^{\circ} .5$ north of true west at this location. Ed.] I also recommend being prepared for desert conditions in case you have car trouble. The area has no nearby


Figure 24. Portion of $1: 24,000$-scale Meteorite Crater quadrangle. [1] Located in Nye County, Nevada. Contour interval 20 feet ( 6.2 m ), with elevations in feet above mean sea level. Reduced to about 70 percent of the original scale, this reproduction's scale is indicated by the square grid lines, spaced 1000 meters apart. North at top.
homes and is not often visited; mine were the only tire tracks visible at the crater. You will find the people at MaxOil, located near mile marker 104 on U.S. 6, to be very nice about giving directions and agreeing to send help if you do not return after a specified period of time. When asking for directions locally, remember that the local people call the feature "the meteor crater," rather than "Irwin Crater" as I have done here. Also, some of them may mistakenly try to guide you to a nearby volcanic crater called "Lunar Crater," which is some miles farther west on U.S. 6. In addition to the people at MaxOil, the owner of the bar and filling station in Currant is familiar with the crater and its location, and has a 3-dimensional topographical map of the area on a table for public viewing.

Those who wish more information about the Irwin Crater may write to me for a copy of Reference [2]; please include a stamped selfaddressed envelope with your request.

## REFERENCES

1. U.S. Geological Survey.Meteorite Crater Quadrangle. Nevada-Nye Co. 7.5 Minute Series (Topographic).Provisional Edition, 1990. Scale 1:24,000, contour interval 20 feet.
2. Rinehart, John S. \& Elvey, C.T. "A Possible Meteorite Crater near Duckwater, Nye County, Nevada (ECN = +1157,387)." Popular Astronomy, 58, No. 4 (April, 1951), pp. 209-211.

Figure 25. Looking to the magnetic west toward Irwin Crater from the N-S road showing the E-W road lead ing to the crater. The crater itself is about $1000 \mathrm{~m}(0.6$ mi) away and not visible from this distance. The Pancake Range forms the sky line. All photographs by au thor.


Figure 26. Looking apppximately north from the soth rim of Inwin Crater, with extends to the left. The Fater is approximately 5,50 feel ( 1600 m ) above sea level; the unnamed trianular peak left of center is about $1.9 \mathrm{mi}(3.1 \mathrm{~km})$ neth and 5942 feet ( 1811 m ) above sea level.


Figure 27. Excavationin the floor of Irwin Crater, ${ }^{\text {show }}$ ing remnants of ladder


# COMET CORNER 

By: Don E. Machholz, A.L.P.O. Comets Recorder

## COMET FINDS FOR THE First Half OF 1992

Comet Helin-Alu (1992a).-E. Helin and J. Alu reported this discovery on a photograph taken by them and K. Lawrence on 1992 JAN 09 , using the $46-\mathrm{cm}$ ( $18-\mathrm{in}$ ) Schmidt at Palomar Mountain. When discovered, the comet was a 16 th-magnitude object in the constellation Hydra, $20^{\circ}$ south of the Beehive Cluster, M44. The comet did not get much brighter. On 1992 JuL 08 this object was closest to the Sun, at a distance of 3.0 AU. [1 AU, or astronomical unit, is the mean distance of the Earth from the Sun, or $149,597,870 \mathrm{~km}$. Ed.]

Comet Bradfield (1992b).—William Bradfield of Australia found this, his 15th comet, on 1992 JAN 31 . He was then using his $15-\mathrm{cm}(6-\mathrm{in}) \mathrm{f} / 5.5$ refractor at $26 \times$. This find came after 299 hours of comet seeking since his last previous find three years earlier.

At discovery, the comet was in the constellation Scorpius, at magnitude +10 . When he first found the comet, a lack of good alignment with field stars prevented Bradfield from determining the direction and amount of motion. The next morning was cloudy, but Bradfield finally confirmed the comet's existence and motion by observing through a hole in the clouds. The comet was headed toward a perihelion on 1992 MAR 19, with a solar distance of 0.50 AU . However, instead of brightening, the comet held steady in brightness, and then dimmed so that by early March it was barely visible on long-exposure photographs.

Periodic Comet Howell (1992c).-S. Larson and A.L.P.O. Assistant Comets Recorder Jim Scotti recovered this comet on CCD images obtained on 1992 MAR 05 with the Steward Observatory's $2.3-\mathrm{m}$ ( $91-\mathrm{in}$ ) reflector when the comet was at magnitude +21 . This comet will be closest to the Sun in late February, 1993, at a solar distance of 1.41 AU . It should reach magnitude +12 by then.

Comet Tanaka-Machholz (1992d).-This comet was first observed visually by Zenichi Tanaka of Japan, on 1992 MAR 24. He also photographed it, which appeared to indicate a motion of $4^{\circ}$ per day. The reported rapid motion and cloudy weather prevented the Tokyo Observatory from confirming the comet. Then, one week later the writer picked up an object $8^{\circ}$ away from Tanaka's discovery position, with motion in a direction similar to that he reported, but moving at only $1^{\circ}$ per day. It now appears that this was Tanaka's object, with his earlier reported motion in error. Tanaka had used a $20-\mathrm{cm}(8-\mathrm{in})$ reflector at $40 \times$ with a $1^{\circ} .5$ field and had been searching the morning sky in strong moonlight. He had searched for 244 hours for this, his first discovery. The writer had used a homemade 12 -
$\mathrm{cm}(4.7-\mathrm{in})$ refractor at $20.5 \times$ with a $3^{\circ} .0$ field, having searched for 760 hours since his last previous find in August, 1988. At discovery, this comet's magnitude was +10 .

Comet Tanaka-Machholz was closest to the Sun at 1.26 AU on 1992 APR 22. It continued to move NE, through Andromeda and Cassiopeia. An outburst on 1992 MAY 12 brightened it to magnitude +7 . After this, it swung under the North Celestial Pole, dimming until it was lost in the evening twilight in mid-July. This comet is not expected to become visible again.

## Periodic Comet Singer-Brewster (1992e).

 —Jim Scotti recovered this comet from Kitt Peak on 1992 APR 01 when it was at magnitude +20 . It will be closest to the Sun on 1992 OCT 27 at 2.03 AU and should not get much brighter.Periodic Comet Shoemaker-Levy 8 (1992f).-Carolyn and Eugene Shoemaker and David Levy discovered this comet with the $46-\mathrm{cm}$ ( 18 -in) Schmidt at Palomar Mountain on 1992 APR 05. It was magnitude +17 at discovery, but it will not get much brighter since its 7.5 -year orbit is now carrying it away from the Sun after its 1992 JUN 19 perihelion of 2.7 AU .

Periodic Comet Mueller (1992g).——Jean Mueller discovered this comet on plates taken for the Palomar Sky Survey II. Found on 1992 APR 09, the comet was then just past perihelion ( 2.6 AU ) on its 9 -year orbit. It was never brighter than magnitude +17 .

Comet Spacewatch (1992h).-D. Rabinowitz used moving-object detection software and the $1.1-\mathrm{m}$ ( $43-\mathrm{in}$ ) Spacewatch Telescope at Kitt Peak to pick up this comet on 1992 MAY 01. The orbital calculations indicate that this comet will be closest to the Sun on 1993 SEP 08, when it might reach magnitude +12 .

Comet Bradfield (1992i). -William Bradfield discovered this comet on 1992 MAY 03, when it was in the moming sky in the constellation Cetus at magnitude +10 . Bradfield was again using his $15-\mathrm{cm}$ ( $6-\mathrm{in}$ ) refractor. This find came after 30.3 hours of searching since his discovery of 1992 b three months before.

The ephemeris indicated that this comet would be closest to the Sun, at 0.59 AU , on 1992 MAY 25. However, it did not brighten as expected and was not well observed after the month of May.

Periodic Comet Ashbrook-Jackson (1992j).-Alan Gilmore and Pam Kilmartin recovered this comet on 1992 MAY 04, more than one year before its perihelion. They used the $60-\mathrm{cm}(24-\mathrm{in})$ reflector at Mt. John Observatory in New Zealand. The comet was then at magnitude +19 , but may reach magnitude +12 by Summer, 1993.

## Present Comet Activity

Excluding near-future discoveries, few comets should be visible in the latter part of 1992. Nonetheless, at least two comets should be present. Please send your observations to the writer (address on inside back cover).

Periodic Comet Schwassmann-Wachmann 1.-This comet is in a nearly-circular orbit at about 5 AU from the Sun. It is normally quite faint, but will occasionally outburst to magnitude +11 or +12 . You may wish to monitor this comet. (See Table 1, below and top right column.)

Periodic Comet Schaumasse.-This comet, first found in 1911, has an 8 -year orbital period. It will be closest to the Sun on 1993 MAR 04 at 1.2 AU , but its brightness is difficult to predict. Its ephemeris is given on Table 2 (to right); during the first few months of the ephemeris this comet will probably be brighter than predicted. Note that in February, 1993, it will be within 0.6 AU of the Earth.
[Note by Editor: Comet P/Swift-Tuttle has been recovered. For information see the announcement on page 140 of this issue.]

## EPHEMERIDES

Notes: In the "Elongation. from Sun" column, E refers to visibility in the evening sky, and $\mathbf{M}$ to morning visibility. "Total Mag." values are forecasts of visual total magnitudes and are subject to considerable uncertainty.

## Table 1. Ephemeris of Periodic Comet Schwassmann-Wachmann 1.

| 92 | 2000.0 Coörd. |  | Elongation |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UT Date | R.A. | Deal. | - |  |  |
| ( O UT) | h m |  |  |  |  |
| Oct 05 | 0554.4 | +31 25 | 103 | M | +17 |
| 10 | 0554.6 | +31 29 | 108 | M | +17.5 |
| 15 | 0555.0 | +31 34 | 113 | M | +17.5 |
| 20 | 0554.8 | +31 38 | 118 | M | +17.4 |
| 25 | 0554.2 | +31 42 | 22 | M | 7.4 |
| 30 | 0553.4 | +3145 | 28 | M | 7.4 |
| Nov 04 | 0552.2 | +3148 | 133 | M | +17.4 |
| 09 | 0550.7 | +31 51 | 138 | M | +17.3 |
| 14 | 0548.9 | +3153 | 144 | M | +17.3 |
| 19 | 0546.9 | +31 54 | 149 | M | 7.3 |
| 24 | 0544.6 | +3155 | 54 | M | 7.3 |
| 29 | 0542.1 | +3154 | 159 | M | 7.3 |
| DEc 04 | 0539.5 | +31 53 | 164 | M | +17.3 |
| 09 | 0536.8 | +31 50 | 169 | M | +17.3 |
| 14 | 0534.0 | +3147 | 171 | M | +17.3 |
| 19 | 0531.2 | +3142 | 71 |  | 7.3 |
| 24 | 0528.4 | +31 37 | 168 | E | +17.3 |
| 29 | 05 | +31 30 |  | E |  |
| 1993 3 |  |  |  |  |  |
| Jan 03 | 0523.2 | +31 23 | 158 | E | +17.3 |
| 08 | 0520.9 | +31 15 | 153 | E | +17.3 |
| 13 | 0518.8 | +3107 | 147 | E | +17.3 |
| 18 | 0516.9 | +30 59 | 142 | E | +17.4 |
| 23 | 0515.3 | +30 50 | 137 | E | +17. | (continued on top of right column)

Ephemeris of Periodic Comet SchwassmannWachmann 1-Continued.

| 1993 | 2000.0 Coörd. |  |  |  | Elongation from Sun |  | Total Mag. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UT Date |  | 7.A. | D | cl. |  |  |  |
| (0h UT) | h | m |  |  | - |  |  |
| JAN 28 | 05 | 14.0 | +30 | 41 | 131 | E | +17.4 |
| Feb 02 | 05 | 13.0 | +30 | 32 | 126 | E | +17.4 |
| 07 | 05 | 12.4 | +30 | 23 | 121 | E | +17.5 |
| 12 | 05 | 12.0 | +30 |  | 116 | E | +17.5 |
| 17 | 05 | 12.0 | +30 |  | 111 | E | +17.5 |
| 22 | 05 | 12.4 | +29 |  | 106 | E | +17.6 |
| 27 | 05 | 13.0 | +29 | 51 | 101 | E | +17.6 |

Table 2. Ephemeris of Periodic Comet Schaumasse.

| 1992 | 2000.0 Coörd. |  | Elongation from Sun |  | Total <br> Mag. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UT Date | R.A. | Decl. |  |  |  |
| (0h UT) | h m | - | - |  |  |
| Oct 05 | 0431.9 | +11 14 | 123 | M | +17.8 |
| 10 | 0434.6 | +1117 | 128 | M | +17.4 |
| 15 | 0436.7 | +1121 | 132 | M | +17.0 |
| 20 | 0438.2 | +1125 | 136 | M | +16.6 |
| 25 | 0438.9 | +1131 | 141 | M | +16.1 |
| 30 | 0438.7 | +1139 | 146 | M | +15.7 |
| Nov 04 | 0437.7 | +1150 | 151 | M | +15.3 |
| 09 | 0435.7 | +1204 | 156 | M | +14.9 |
| 14 | 0432.7 | +1223 | 161 | M | +14.4 |
| 19 | 0428.7 | +1248 | 166 | M | +14.0 |
| 24 | 0423.8 | +13 19 | 171 | M | +13.5 |
| 29 | 0418.1 | +13 57 | 172 | E | +13.1 |
| DEC 04 | 0411.7 | +14 43 | 169 | E | +12.7 |
| 09 | 0404.8 | +1537 | 164 | E | +12.3 |
| 14 | 0357.8 | +16 40 | 158 | E | +11.9 |
| 19 | 0350.9 | +1750 | 152 | E | +11.5 |
| 24 | 0344.6 | +19 11 | 146 | E | +11.1 |
| 29 | 0339.1 | $+2038$ | 140 | E | +10.7 |
| 1993 |  |  |  |  |  |
| JAN 03 | 0334.9 | +22 12 | 134 | E | +10.4 |
| 08 | 0332.0 | +23 53 | 129 | E | +10.1 |
| 13 | 0330.8 | +25 39 | 124 | E | +9.8 |
| 18 | 0331.4 | +27 31 | 119 | E | +9.5 |
| 23 | 0333.9 | +29 28 | 115 | E | +9.2 |
| 28 | 0338.5 | +31 29 | 111 | E | +9.0 |
| Feb 02 | 0345.3 | +33 32 | 108 | E | +8.8 |
| 07 | 0354.3 | +35 37 | 105 | E | +8.6 |
| 12 | 0405.6 | +3742 | 103 | E | +8.4 |
| 17 | 0419.6 | +39 44 | 101 | E | +8.3 |
| 22 | 0436.6 | +4140 | 100 | E | +8.2 |
| 27 | 0455.4 | +43 27 | 098 | E | +8.1 |

Those wishing to compute their own ephemerides for these two comets may use these orbital elements.

| Value | Comet S-W 1 | Comet Schaumasse |
| :---: | :---: | :---: |
| T | 1989 OCT 26.7 | 1993 MAR 04.1 |
| q (AU) | 5.7718 | 1.2022 |
| $\varpi$ | $049{ }^{\circ} .897$ | 057 ${ }^{\circ} .451$ |
| $\delta 6$ | $312^{\circ} .123$ | 080 ${ }^{\circ} .386$ |
| i | $009^{\circ} 367$ | $011^{\circ} .846$ |
| e | 0.04466 | 0.70487 |
| Epoch | 1950.0 | 2000.0 |

# Lunar Dome Catalog (April 30, 1992 Edition) 

By: Harry D. Jamieson, A.L.P.O. Lunar Dome Recorder (1992-), and James H. Phillips, A.L.P.O. Lunar Dome Recorder (1986-1992).

Note by Editor: As announced in our March, 1992, issue ( p . 45), James H. Phillips has resigned as Lunar Dome Recorder, and has been replaced by Harry D. Jamieson. Dr. Phillips has been kind enough to provide the introduction below (referring to the Dome Catalog as he left it). Mr. Jamieson has subsequently revised the catalog, however; and his version is the one given below. Our readers should realize that such a catalog is never complete, and is constantly being revised. Many questions remain to be answered. Also, the following catalog is highly abbreviated in order to fit this Journal, although I have tried to explain terms and abbreviations at the end.

## INTRODUCTION (by James H. Phillips)

After a lapse of several years, the present Lunar Dome Survey was reactivated in 1986. Our initial goals were to compile a catalog based on data from the original survey, which had been headed by Harry Jamieson. In addition, the objects were plotted on lunar quadrant maps in order to aid observers in identifying the domes. The following catalog was the results of the efforts of all who participated in the present survey to this point [with subsequent revisons and additions by the present Recorder. Ed.]. Additional information on ob-
jects was also obtained and was added to the catalog. As can be seen, a great deal of data have been compiled on individual domes. However, a great deal more needs to be done. Harry Jamieson, an original Recorder of the A.L.P.O. Lunar Dome Survey, has now again taken over as Recorder. I am grateful to all who have participated in the Survey up to this time, and particularly for all the help received from Harry Jamieson and John Westfall. The Lunar Dome Survey is a very worthwhile project for interested amateurs and I urge all those interested in this project to contact Harry Jamieson (address on inside back cover).

The following individuals have contributed to the Survey, and I am grateful for all their help and support. (I have also given the nationalities of those who are not residents of the United States.)
José Aguirre (Spain) Schuyler Allen
Kocsis Antal (Hungary) Joe Caruso Karl Fabia Harry Jamieson
Craig Macdougal José Olivarez Za Pujic (Australia) George Rosenberg R. Tumer (UK)

Ross Weyburg

Alika Herring
Charles Kapral
Rob Moseley (UK)
Michael Porcellino
Robert Robinson
John Sabia
Ed Vinson
John Westfall

Table 1. Lunar Dome Catalog (April 30, 1992 Version, provided by Harry D. Jamieson)

| Xi | Eta | Feature Near | Observer/Date/Remarks | Xi |  | Feature Near | Observer/Date/Remarks |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 915 | 025 | M Spumans | FJEW 11/26/69 27 km JEW | 773 |  | Crozier | F.CP | 03/19/72 |
| 904 | 025 | M Spumans | FJEW 11/26/69 35kmJEW | 773 | -238 | Crozier | F-HDJ | 9km-CP Same as |
| 860 | 290 | M Crisium | F-KJD 12/26/72 25km-KJD |  |  |  | +777-23 | 38? |
| 856 | 290 | M Crisium | F-KJD 12/26/72 35km-KJD | 769 |  | Lick | F-MWH | 4km. HDJ |
| 838 | -035 | Webb B | F-??? Part of a ridge-CLR. | 769 |  | Crozier | F-??? |  |
| 822 | -309 | Vendelinus | F-KJD DW/2A/5F/05km,51mKJD | 768 | -237 | Crozier | $\begin{aligned} & \text { F-HDJ } \\ & \text { KJD } \end{aligned}$ | 14km-KJD DW/2A/6F/0 |
| 811 | -315 | Vendelinus | F-KJD Uncertain-KJD DW/2A?/5G/0 | $\begin{aligned} & 766 \\ & 761 \end{aligned}$ |  | Petavius B Petavius B | $\begin{aligned} & \text { KHS } 54 \\ & \text { F-HDJ } \end{aligned}$ | $4 \text { F-1960 }$ <br> Rümker-type cluster? |
| 807 | . 310 | Vendelinus | F-KJD DW/2A/5G/0 17km-KJD | 761 | -312 | Petavius B | KHS 55 | F-1960 |
| 795 | -316 | Petavius B | F-HDJ Seen-CLR. Nothing seen-KJD | 755 755 |  | Messier Messier | F-HDJ | 20km-CP Cntr, of region |
| 791 | -525 | Adams | F-CLR Large lrreg. Complex |  |  |  | containi | ing 4 suspected domes. |
| 787 | 088 | S ot M Crisium | F-KJD | 754 | -047 | Messier | F-MWH | HHigh w/sharp summit |
| 783 | 594 | Gauss | F-HDJ |  |  |  | 5km-HD | J A5-D |
| 781 | -242 | Crozier | KHS 66 F-1960 | 747 | 026 | Taruntius G | F-??? | cf JBAA v.76\#5 p. 326 |
| 779 | 216 | Lick | F-HDJ Suspected by CLR | 745 | 265 | O'Neil's Bridge | F-??? | Dumbbell- shaped (2 |
| 779 | 211 | Lick | F-HDJ Seen-CLR |  |  |  | domes? | ?) $20 \mathrm{~km} \mathrm{~N}-\mathrm{S}-\mathrm{KJD}$ |
| 779 | -252 | Crozier E | KHS 6 F-1960 | 744 |  | Goclenius | F-HDJ | 13km-HDJ 24km-KJD |
| 777 | -225 | Crozier | F-CP | 737 | -217 | Bellot | F-KJD | 4km-KJD (AKH + 740 |
| 777 | -238 | Crozier | F-KJD 10km-KJD |  |  |  | -215) A | 5-D DW/1A/5F/0 |
| 777 | -318 | Petavius B | KHS 63 F-1960 | 736 | . 085 | Messier | F-HDJ | $9.6 \mathrm{~km} \cdot \mathrm{HDJ}$ Seen-MWH |
| 776 | 217 | Lick | F-HDJ Seen-CLR | 734 | -145 | Messier | F-HDJ | 14.3 km -HDJ 12 km -CP |
| 775 | 605 | In Gauss | F-HDل A2-B | 732 | - 395 | Biot | F-??? |  |
| 774 | -348 | Petavius B | KHS 5 F-1960 | 729 | -172 | M Fecunditatis | F-??? | 24km |
| 773 | 078 | Taruntius | F-KJD | 728 | -060 | Messier | F-HDJ | Seen-MWH |
| 773 | 058 | M Crisium | F-KJD 10/13/65 13km-KJD | 728 | -355 | Biot | F.KJD | 03/03/68 30km - Too |
| 773 | -228 | Crozier | F-CP 03/19/72 |  |  |  | steep for | or dome?-KJD LAC98 |

Table 1. Lunar Dome Catalog (April 30, 1992 Version, provided by Harry D. Jamieson)—Cont/nued.

| Xi | Eta | Feature Near | Obsarver/Date/Remarks | Xi. Eta Eeature Near |  |  | Observer/Date/Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 719 | -190 | Gutenberg | F-HDJ 15km-HDJ | 545 | 205 | Sinas | $\text { F-CLR } 12 / 27 / 65$ |
| 710 | 015 | Taruntius | F-HDJ Ridge? HDJ 15km-Flat | 544 | 567 | Neander | F-HDJ? |
|  |  |  | Irreg.-CP | 540 | 245 | Vitruvius | F-KJD |
| 708 | 004 | Messier | F-HDJ 15km-CP A5-D | 540 | 223 | Jansen | KHS 51 F-1960 |
| 703 | -113 | Gutenburg | F-??? 24km | 539 | 121 | Sinas | KHS 34 F-1960 |
| 698 | -175 | In Goclenius | F-KJD 33 km -KJD | 538 | 257 | Maraldi | F-KJD |
| 697 | -075 | Messier | F-HDJ 40km-HDJ 53km-CP | 537 | 224 | Jansen F | F-CLR 12/27/65 |
|  |  |  | 45km-KJD | 537 | 204 | Sinas | ABJC 11 km -KJD DW/2A/5F/0 |
| 680 | -210 | Magelhaens | F-KJD 18X12km-CP | 537 | 117 | Sinas | KHS 35 F-1960 |
| 670 | 571 | Geminus | F-HDJ Seen-CLR | 536 | 183 | Sinas | ABJC 7.5 km DW/2A/6G/7J |
| 669 | 568 | Geminus | F-HDJ Seen-CLR | 534 | 288 | Marald D | ABJC 60.9 km 975 m high |
| 667 | -079 | Gutenburg | F-MWH A5.D $9.5 \mathrm{~km} \cdot \mathrm{CP}$ |  |  |  | (Ashbrook) DUW/4A/61/7P8P9P |
| 640 | -380 | Santbech | F-HDJ A hill-KJD 5/24/66 | 534 | 242 | Maraldi | F-??? 6km |
| 622 | 350 | Macrobius A | F-HDJ B3-A 3km | 532 | 239 | Lucian | KHS 52 F-1960 |
| 622 | - 156 | Gutenburg | F-HDJ 6.2km-HDJ Seen-CLR | 531 | 195 | Sinas | F-CLR |
|  |  |  | (tentative) | 530 | 135 | Sinas | KHS 41 F-1960 |
| 622 | -336 | Santbech | F-HDJ cf. CLR Obs 12/27/65 | 529 | 292 | Gardner | KHS 45 F-1960. |
| 620 | 009 | Cauchy | F.HDJ |  |  |  | Very large \& mountainous. |
| 620 | 045 | Cauchy | F-KJD 30km-KJD | 529 | 237 | Lucian | KHS 48 F-1960 |
| 619 | -371 | Santbech | F-HDJ Seen-KJD 5/24/66 | 528 | 152 | Sinas | F-CLR Very low-only seen |
| 618 | -167 | Gutenburg | F-??? 13km-HDJ 8km-KJD 41m-KJD |  |  |  | when right on terminator-CLR KHS $36 \mathrm{~F}-1960$ |
| 617 | 068 | Cauchy | F-KJD Very doubtful-KJD 16km | 526 | 144 | Sinas | KHS 44 F-1960. |
| 616 | -354 | Santbech | F-HDJ Seen-CLR 9km | 526 | 136 | Sinas | KHS 42 F-1960 |
| 515 | 126 | Cauchy | F-??? ABJC LAC-61 9.6km | 525 | 124 | Sinas | KHS $38 \mathrm{~F} \cdot 1960$ |
|  |  |  | 413m-KJD | 525 | -336 | Fracastorius | F-CLR?Large cinder heap-CLR |
| 615 | 065 | Cauchy | F-KJD 06/23/66 III-defined | 524 | 187 | Maraldi | ABJC 8 km DW/2A/6H/0-KJD |
|  |  |  | 25km-KJD Seen Jo | 524 | 140 | Sinas | KHS 43 F-1960 |
| 613 | -344 | Santbech | F-??? 4 km | 523 | 223 | Jansen | KHS 46 F-1960. 38m-KS. |
| 612 | -358 | Santbech | F-HDJ? Seen-CLR 9km | 523 | 206 | Sinas | ABJC DW/2C/6G/7P 15km-KJD |
| 609 | 173 | Cauchy | F-CLR? | 523 | 126 | Sinas | KHS 39 F-1960 |
| 609 | -381 | Santbech | F-HDJ 4km | 523 | -334 | Fracastorius | F-KJD? 21km DCW/1A/5A/O?- |
| 608 | -376 | Santbech | F-??? |  |  |  | MWH |
| 606 | 146 | Cauchy | F-KJD SeendJEW | 522 | 122 | Sinas | F-HDJ Seen-CLR |
| 606 | 124 | Cauchy | F-HDJ on B4-B Seen-MWH | 521 | 237 | Jansen | KHS 47 F-1960 |
|  |  |  | 11/22/71 | 520 | 240 | Sinas | F-HDJ |
| 603 | -380 | Santbech | F-??? 5.5 km -HDJ ABJC | 520 | -166 | Isidorus | KHS 20 F-1960 |
| 602 | 177 | Cauchy | F-HDJ Part of ridge-CLR | 520 | -331 | Fracastorius | KHS 32 F-1960 |
| 600 | 055 | Cauchy | F-KJD DU/2E/5F/0 8km-KJD | 519 | 251 | Maraldi | F-HDJ |
| 599 | 183 | Cauchy | F-HDJ | 519 | 186 | Sinas | LAC-61 ABJC DW/2A/5F/0 7km |
| 599 | - 344 | Santbech | F-HDJ Seen-CLR 5.3 km | 518 | -326 | Fracastorius | F-HDJ B6-B |
| 598 | -389 | Santbech | F-HDJ Seen-CLR 9.6km-HDJ | 517 | 247 | Maraldi | F-HDJ |
| 596 | 151 | Cauchy | F-KJD LAC-61 Seen-CLR | 517 | -379 | Fracastorius | F-HDJ B6-B |
| 595 | 055 | Cauchy | F-KJD 30km Ill-defined-KJD | 516 | 131 | Sinas | F-HDJ Seen-CLR, JEW |
| 594 | 275 | Maraldi | F-HDJ B3-A Small | 516 | -154 | Isidorus | KHS 21 F-1960 |
| 593 | 360 | Maraldi | F-HDJ B3-A 6.6 km Oval | 515 | -330 | Fracastorius | KHS 31 F-1960 |
| 593 | 321 | Maraldi | F-HDJ B3-A | 514 | -152 | Isidorus | KHS 22 F-1960 |
| 593 | 319 | Maraldi | F-HDJ B3-A | 511 | 231 | Jansen | KHS 49 F-1960 |
| 593 | 131 | Cauchy | ABJC B4-B LAC-61 AIC-61D | 511 | 075 | Maskelyne | F-HDJ B4-D |
|  |  |  | 10.3 km DW/2A/6F/9MN 150m | 510 | 224 | Jansen | KHS 50 F-1960 |
| 592 | 103 | Cauchy | F-MWH | 510 | 200 | Sinas | ABJC 6.8 km DW/2A/6H/0 |
| 588 | 324 | Maraldi | F-KJD B3-A Shows possible | 510 | 092 | Maskelyne | F-HDJ |
|  |  |  | junction of ridges-HDJ | 508 | 207 | Maraldi | F-HDJ 4.8 km |
| 586 | 364 | Maraldi | F-HDJ B3-A 5km Slightly oval | 508 | -330 | Fracastorius | KHS 33 F-1960 |
| 584 | 107 | Cauchy | F-MWH 10km Round-HDJ | 507 | 184 | Sinas | ABJC DW-3B/5F/7M 10km-KJD |
| 583 | 301 | Maraldi | F-HDJ B3-A 7km Round | 506 | -380 | Fracastorius | F-HDJ B6-B |
| 581 | 379 | Römer | F-HDJ B3-A | 503 | 203 | Maraldi | F-HDJ 4.8 km |
| 574 | 327 | Maraldi | F-HDJ B3-A | 503 | -334 | Fracastorius | F-HDJ |
| 568 | 244 | Maraldi D | ABJC 6.0 km DW/2A/6F/0 | 500 | 175 | Sinas | F-Pither (BAA) Seen by KJD |
| 567 | 269 | Maraldi D | F-HDJ? | 500 | 112 | Sinas | F-HDJ |
| 565 | 247 | Maraldi | F-JEW on LAC-61 6km-JEW | 500 | 105 | Sinas | F-HDJ |
|  |  |  | Seen-HDJ on B4-B | 499 | 172 | Sinas | F-Pither (BAA) |
| 565 | 243 | Maraidi | F-by JEW on LAC-61 | 499 | -323 | Fracastorius | KHS 29 F-1960 |
|  |  |  | Seen-HDJ on B4-B 5km-JEW | 494 | 192 | Sinas E | F-HDJ 5.5 km |
| 561 | 078 | Maskelyne F | FJO 11/11/72 | 492 | 208 | Jansen | F-HDJ B4-D |
| 557 | 113 | Sinas | F-HDJ | 490 | 210 | Jansen | F-HDJ B4-D |
| 556 | 042 | Maskelyne F | F- KJD 4km Seen by JEW | 490 | -103 | Torricelli | KHS 24 F-1960 |
| 553 | 255 | Vitruvius | F.KJD | 490 | -111 | Torricelli | KHS 23 F-1960 |
| 551 | 075 | Maskelyne F | F-JO 11/11/72 | 490 | -160 | Theophilus | KHS 17 F-1960 |
| 550 | 248 | Vitruvius | F-KJD | 488 | 624 | Maury | F-??? |
| 549 | 259 | Vitruvius | F-KJD | 488 | -338 | Fracastorius | KHS 30 F-1960 |
| 548 | 185 | Sinas | F-HDJ SeenJEW \& Kiplinger | 486 | 623 | Maury | F-??? |
| 545 | 252 | Vitruvius | F-KJD | 486 | -151 | Theophilus | KHS 18 F-1960 |

Table 1. Lunar Dome Catalog (April 30, 1992 Version, provided by Harry D. Jamieson)-Continued.

| Xi | Eta | Eeature Near | Observer/Date/Remarks | Xi |  | Feature Near | Qbserver/Date/Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 480 | -133 | Theophilus | KHS 19 F-1960 | 374 | 103 | Arago | F-HDJ on Horiguchi Photo. |
| 478 | 229. | Jansen | F-HDJ |  |  |  | 08/11/71 About size of Arago D |
| 475 | 578 | L Somniorum | F-HDJ B2-A Small | 373 | 273 | Plinius | KHS F-1960 |
| 475 | 284 | Jansen | F-KJD | 373 | 095 | Arago | F-JEW C4-D Horiguchi Photo. |
| 472 | 592 | L Somniorum | F-HDJ E2-A Small |  |  |  | 8/11/71 |
| 470 | 572 | L Somniorum | F-HDJ B2-A Small | 372 | 100 | Arago | F-HDJ on Horiguchi Photo. |
| 469 | 575 | L Somniorum | F-HDJ B2-A Small |  |  |  | 08/11/71 About size of Arago D |
| 467 | 293 | Jansen | F-KJD | 369 | 277 | Plinius | KHS 9 F-1960 |
| 467 | 286 | Jansen | F-KJD | 368 | 096 | Arago | F-HDJ on Horiguchi Photo. |
| 466 | 256 | Jansen | F-KJD |  |  |  | 08/11/71 About size of Arago E |
| 465 | 225 | Jansen | F-HDJ 6.2 km | 365 | -488 | Zagut | F-KJD 12/29/65 8km |
| 460 | 543 | Posidonius | F-HDJ on B2-A Small |  |  |  | DU/2E/5F/0? 380 m high-KJD |
| 455 | 540 | Posidanius | F-HDJ B2-A Small | 363 | 159 | Arago | F-HDJ on Horiguchi Photo. |
| 453 | 281 | Dawes C | F-HDJ on B3-E B4-D |  |  |  | 08/11/71 About size of Arago D |
| 452 | -332 | In Beaumont A | F-Dall'Ara Hill-KJD | 363 | 130 | Arago | LAC-60 ABJC |
| 451 | -389 | Fracastorius | FJEW |  |  |  | DCW/3D/6I/7P8P9P 24km- HDJ |
| 449 | -030 | Maskelyne | F-Pither (BAA) Double hill-KJD | 362 | -282 | Catharina | F-CLR |
| 449 | -104 | Toricelli | F-MWH (Doubts nature) | 362 | -478 | Rothmann | F-HDJ? |
|  |  |  | $\begin{aligned} & 07 / 17 / 72 \\ & \mathrm{DCW} / 3 \mathrm{D} / 5 \mathrm{~F} / 7 \mathrm{~K} 8 \mathrm{MK} 9 \mathrm{~K} \end{aligned}$ | 361 | 167 | Arago-Maclear | F-HDJ on Horiguchi Photo. 08/11/71 About as large as |
| 446 | -730 | In Janssen | F-HDJ B7-A Quite large |  |  |  | Arago - HDJ |
| 442 | 263 | Jansen | F-JA Quite Steep-CLR 6/24/66 | 359 | -480 | Rothmann | F-HDJ? |
| 433 | 164 | Ross | KHS 14 F-1960 | 358 | 149 | Arago | LAC-60 ABJC 9km DW/2E/6F/0 |
| 430 | 280 | Dawes | ABJC DW/2E/6F/0?? | 357 | 554 | Luther | F-??? 10 km |
|  |  |  | B4-B B3-E Uncertain | 357 | 077 | S oi Arago | F-HDJ Seen-JEW |
| 428 | 167 | Ross | KHS 16 F-1960 | 354 | 550 | Luther | F-HDJ Seen-CLR 6/24/66 at |
| 427 | 417 | Lemonnier | FJEW |  |  |  | +349+550 |
| 427 | 206 | Ross A | KHS 12 F-1960 | 353 | 155 | Arago | LAC-60ABJC DW/2E/6F/0 10km |
| 424 | 533 | Posidonius | F-HDJ? B3-A 9.1 km | 353 | -474 | Rothmann | F-CLR |
| 424 | 317 | Dawes | F-KJD | 351 | 549 | Luther | F-HDJ Seen-CLR 6/24/66 |
| 424 | -462 | Piccolomini | LAC-96 B6-B DU/2A/6H/8P9K- | 350 | -478 | Rothmann | F-??? |
|  |  |  | KJD ABJC 13.7 km | 349 | 161 | Arago | Several Ob., B4-B LAC-60 7km |
| 423 | 511 | Posidonius | F-HDJ? B3-A 7 km |  |  |  | DW/2B/5l/9」 Appears double |
| 423 | 239 | Ross | F-HDJ B4-D Oval | 349 | 148 | Arago | F-KJD DW/1A/6F?7J?4km-KJD |
| 423 | 170 | Ross | KHS 13 F-1960 | 343 | 723 | Bürg | F-??? |
| 422 | 175 | Ross | KHS 25 F-1960 | 339 | 107 | Arago | F-??? Well-known |
| 420 | 707 | Hercules | F-HDJ B2-A | 335 | 607 | Plana | F-HDJ 12.3 km |
| 420 | 310 | Dawes | F-KJD | 325 | 733 | Bürg | F-??? |
| 420 | 167 | Ross | KHS 15 F-1960 | 324 | -528 | Zagut | KHS F-1960 Catalog |
| 419 | 535 | Posidonius | F-HDJ? B3-A $13 \times 5 \mathrm{~km}$ | 318 | -526 | Zaugt | KHS 3 F-1960 Catalog |
|  |  |  | Double dome? | 315 | -520 | Zagut | F-HDJ |
| 417 | 000 | Moltke | F-HDJ on Horiguchi Photo. | 313 | -753 | Pitiscus | F-HDJ Small |
|  |  |  | 08/11/71 About size of Moltke | 312 | 053 | Ritter | F-CLR C4-D Cut by cleft. |
| 416 | 536 | Posidanius | F-J. Brannen B3-A 9km-HDJ |  |  |  | Seen-MWH. |
| 413 | -146 | Theophilus | KHS 28 F-1960 | 278 | 660 | Bürg | F-HDJ C2-A DW/2B/5G-MWH |
| 411 | -362 | Polybius | FJEW 2 others nearby-KJD | 275 | 653 | Plana | F-CLR |
| 405 | 145 | Arago | F-HDJ on Horiguchi Photo. | 275 | 576 | Luther | F-CLR |
|  |  |  | 08/11/71 Forms double dome | 274 | 299 | Menelaus | Several Ob., well-confirmedAENC |
|  |  |  | with $+402+148$ | 273 | 658 | Bürg | F-HDJ C2-A |
| 404 | $\cdot 145$ | Theophilus | KHS 26 F-1960 | 273 | 141 | Julius Caesar | F-HDJ 5.5 km -HDJ |
| 403 | 227 | Ross | F-HDJ on Horiguchi Photo. 08/11/71 Bright patch | 272 | 669 | Plana | Can't find- MWH F-CLR DWi2A/5F/8K-MWH |
| 403 | 210 | Rass | F-HDJ on Hariguchi Photo. | 269 | 300 | Menelaus | Several Ob. 12 km -KJD |
|  |  |  | 08/11/71 Very elongated |  |  |  | DW/2E/5?/0 Cut by cleft |
| 402 | 148 | Arago | F-HDJ on Horiguchi Photo. | 266 | 153 | Julius Caesar | F.HDJ DW/2B/5/0-MWH |
|  |  |  | 08/11/71 Forms double dome | 262 | 790 | Aristoteles | F.HDJ 5.5 km |
|  |  |  | with $+405+145$ | 259 | 304 | Menelaus | F-HDJ Might be +255+304. |
| 400 | 195 | Ross | F-HDJ on Horiguchi Photo. |  |  |  | DW/2A/5F?/0 12km-KJD |
|  |  |  | 08/11/71 About size of Ross B | 255 | 155 | Julius Caesar | F-HDJ |
| 385 | 735 | Hercules | F-HDJ | 252 | -292 | Almanon | F-HDJ |
| 382 | 280 | Plinius | KHS 5 F-1960 Catalog | 245 | 361 | Bessel-S. Gallu | us F-MWH 07/02/72 |
| 377 | 277 | Plinius | KHS 6 F-1960 Catalog |  |  |  | DW/1A/4F/0 |
| 377 | 105 | Arago | F-HDJ on Horiguchi Photo. 08/11/71 | 245 | 165 | Julius Caesar | $\begin{aligned} & \text { F-HDJ Seen-MWH } \\ & \text { DW/2A/5H/0 } \end{aligned}$ |
| 377 | -267 | Catharina | KHS 10 F-1960 | 243 | -290 | Almanon | F-HDJ |
| 376 | 542 | Giner | F-JEW | 242 | 588 | Alexander | F-HDJ (RJW Photo.) 9 km |
| 376 | 276 | Plinius | KHS 7 F-1960 Catalog | 240 | 371 | S. Gallus | F-MWH DW/2A/5G/O Position |
| 375 | 108 | Arago | F-HDJ on Horiguchi Photo. 08/11/71 | 239 | 361 | S. Gallus | uncertain <br> F-MWH Position uncertain |
| 375 | -258 | Catharina | KHS 11 F-1960 | 238 | 582 | Alexander | F-HDJ on RJW Photo. 4 km |
| 374 | 655 | Grove | F-HDJ 6.2 km C2-A B2-A | 235 | 371 | Bessel - S. Gal | llus F.MWH 07/02/72 |
| 374 | 547 | Posidonius $P$ | F-HDJ |  |  |  | DW/2A/4G/0 |
|  |  |  |  | 231 | 739 | Mitchell | F-HDJ |

Table 1. Lunar Dome Catalog (April 30, 1992 Version, provided by Harry D. Jamieson)-Continued.

| Xi | Eta | Feature Near | Observer/Date/Remarks |
| :---: | :---: | :---: | :---: |
| 226 | 790 | Aristoteles | F-CLR Very uncertain |
| 225 | 365 | Bessell-S. Gali | us F-MWH 07/02/72 DW/1B/4F/0 |
| 222 | 362 | Bessell-S. Gall | us F-MWH 07/02/72 DW/1E/4F/0 |
| 220 | 210 | Boscovich | F-KJD Very uncertain (KJD) DU/2E/6l/? 10 km |
| 201 | 326 | S. Gallus | F-MWH 07/18/72 DW/2A/5F |
| 193 | -660 | In Maurolycus | F-HDJ |
| 191 | 866 | Kane | F-KJD DW/2A/5F/0 16km-KJD |
| 185 | 353 | S. Gallus | F.??? 07/18/72 DW/1A/5F (MWH) |
| 183 | 348 | S. Gallus | ABJC $12 \mathrm{~km}-K J D$ DW/2A/6F/7K9PM |
| 181 | 465 | Jansen B | KHS 68 F-1960 |
| 180 | 278 | Manilius | F-KJD 01/17/67 Very low 20km-KJD |
| 176 | 648 | Alexander | F-MWH 07/18/72 White patch under high sun |
| 176 | -060 | Sarder | F-??? 16 km |
| 163 | 487 | Linné | F-??? 19X38km |
| 152 | 510 | Linné | CLR KJD HDJ AKH C3-A C3-E 22 km DW/3C/6G/8P ABJC |
| 144 | 511 | Autolycus | F-??? 38km |
| 140 | 250 | Auwers | F-KJD 07/09/66 |
| 138 | 441 | Aratus | F-??? |
| 136 | 387 | Aratus | F-??? 14km |
| 126 | 249 | Manilius | F-HDJ C4-B DW/2A/5H?/7J MWH Dark-haloed, Central pit |
| 125 | 259 | Manilius | FJEW (LAC-59) Possible darkhaloed crater 6.5 km |
| 122 | 791 | Egede A | F-HDJ Portion of a ridge-MWH |
| 122 | 742 | Egede | F-HDJ C2-A Too steep-MWH |
| 122 | 249 | Manilius | F-HDJ Can't find-MWH |
| 119 | 738 | Egede | F-MWH 07/18/72 DW/1A/4F |
| 115 | 252 | Manilius | FJEW (LAC) 2.5 km (C4-B) Seen-MWH |
| 110 | 777 | Egede | F-KJD? DW/2A/4F/8J (MWH) 6 km -KJD |
| 109 | 950 | Meton | F-MWH 11/10/72 9km |
| 108 | 765 | Egede | F-??? 7 km |
| 108 | 706 | Egede | F-??? |
| 106 | 956 | Meton | F-MWH 11/10/72 |
| 101 | 775 | Egede | F-MWH 07/18/72 DW/2A/4F |
| 098 | 260 | Manilius | F-HDJ Seen-MWH 12km-KJD 239m high-KJD |
| 097 | 957 | Meton | F-Heath DW/2D/5F (MWH) Seen-HDJ KJD |
| 096 | 262 | Manilius | F-HDJ Seen-MWH |
| 095 | 911 | Meton-Bond | F-MWH 07/18/72 DW/2A/4F |
| 095 | 775 | Egede | F-MWH 07/18/72 DW/1 A/4F |
| 095 | 582 | Aristillus | F-KJD 15 km -KJD Portion of ridge (MWH) |
| 093 | 768 | Egede | F-??? 12km |
| 092 | 774 | Egede | F-MWH 07/18/72 DW/1A/4H |
| 091 | -117 | Hipparchus | F-KJD 05/27/66 8km-(KJD) Steep |
| 090 | 768 | Egede | F-??? 8km |
| 085 | 764 | Egede | F-KJD 08/01/68 8km (KJD) DW/3B/5F/8K (MWH) |
| 078 | -059 | Horrocks | F-CLR 08/21/69 |
| 075 | -053 | Horrocks | F-CLR 08/21/69 |
| 071 | 571 | P. Nebularum | HDJ D2-A Can't find- MWH |
| 069 | 065 | Triesnecker | F-MWH |
| 061 | 068 | In Triesnecker | ABJC $5.1 \mathrm{~km} \times 3 \mathrm{~km}$ (C4-B) DW-2A/6F/0 |
| 060 | -060 | Horrocks | F-CLR 08/21/69 |
| 059 | 512 | Autolycus | F-??? 35 km |
| 057 | 549 | P. Nebularum | F-HDJ - D2-A MWH Can't find |
| 055 | 504 | Autolycus | F-CLR KJD JO Very low slope about 28 km |
| 052 | 619 | Cassini | F-HDJ D2-A Can't find-MWH |
| 050 | 903 | Bond | F-??? 12 km |
| 045 | -033 | Réaumur | F-JEW LAC $2 \times 4 \mathrm{~km}$-HDJ D5-A. |
| 024 | 444 | Archimedes | F-??? 14X22km |


| Xi | Eta Eeature Near | Observer/Date/Remarks |
| :---: | :---: | :---: |
| 022 | 438 Archimedes | F-??? 21km |
| 017 | -046 Réaumur | FJEW on LAC $1 \times 2.5 \mathrm{~km}-J E W$. Seen by HDJ on D5-A |
| 016 | 434 P. Putredinis | F-??? 2 km |
| 013 | -032 In Réaumur | F-HDJ D4-A |
| 013 | -048 Réaumur | FJJEW on LAC $3 \times 4 \mathrm{~km}$ JEW. Seen by HDJ on D5-A. |
| 012 | 827 M. Frigoris | F-by BAA $17 \mathrm{~km}-K J D$ Doubie dome |
| 005 | -091 Gyldén | F-HDJ D5-A 2.5 km -HDJ |
| 004 | 041 Chladni | BAA HDJ LAC 59 C4-B-KJD CLR $11 \mathrm{~km}-$ CLR $12 \mathrm{~km}-\mathrm{KJD}$ |
| 003 | -086 Gyldén | F-HDJ D5-A 2.5 km - HDJ |
| 002 | 438 P. Putredinis | F-KJD 01/05/66 |
| 002 | 088 Murchison | C4-B 67-H-311 Well-confirmed |
| 001 | -091 Gyldén | F-HDJ D5-A 2.5 km -HDJ |
| -001 | 080 Murchison | ABJC 6 km -HDJ |
| -012 | 456 Archimedes | F-??? 6km-HDJ |
| -013 | -232 Alphonsus | F-HDJ Very small D5-A Ranger-IX |
| -019 | 730 Mouth of Alpine | Valley KHS 89 ABJC 4km-KJD 5km-HDJ |
| -024 | 830 M . Frigoris | F.??? |
| -040 | 443 Archimedes | F-KJD $40 \times 30 \mathrm{~km}$-KJD |
| -046 | 409 Archimedes | F-Doherty (BAA) |
| -050 | 010 Murchison | F-KJD $25 \mathrm{~km}-\mathrm{KJD}$ |
| -056 | 415 Archimedes | F-Doherty (BAA) |
| -057 | -047 Flammarion | $A B J C$ |
| -060 | -056 Flammarion | ABJC |
| -060 | -060 Flammarion | F-??? 8 km |
| -061 | -051 Flammarion | ABJC |
| -066 | -057 Flammarion | ABJC |
| -067 | 851 Plato | F-KJD 11/21/66 6km-KJD |
| -067 | -050 Flammarion | ABJC |
| -070 | 843 Plato | F-KJD 11/21/66 19km-KJD |
| -070 | -070 Flammarion | F-CLR 14km-CLR |
| -073 | 375 Wallace | F-HDJ-KJD 14 km -HDJ 12km-KJD DW 2B/6F'/0 KJD |
| -075 | -053 Flammarion | F-??? $11 \times 8 \mathrm{~km}$-Don Watts |
| -077 | 784 Plato | F-KJD on Orbiter-IV Photo. 8km-KJD |
| -077 | -060 Flammarion | ABJC 9km-KJD |
| -078 | -054 Flammarion | ABJC |
| -078 | -059 Flammarion | F-Watts 9km-Watts |
| -078 | -066 Flammarion | F-CLR 6km-CLR |
| -080 | 845 Plato | F-KJD 11/21/66 19km-KJD |
| -082 | 389 Wallace | F-KJD |
| -090 | 870 Birmingham | F-??? |
| -108 | 316 Wallace | F.??? 45 km |
| - 114 | 780 Plato | F-??? 30X40km |
| -114 | -396 Stag's Horn Mts | s. KHS 80 F-1960 |
| -121 | 670 Pico E | F-JO DW $/ 2 \mathrm{D} / 5 \mathrm{G} / 0$ |
| -127 | -475 Pitatus | KHS 81F-1960 |
| -128 | 316 Eratosthenes | F-CM $17-22 \mathrm{~km}$ |
| -134 | 428 Beer | F-??? |
| -138 | 447 Beer | ABJC DUW 2B/6F/0-KJD |
| -138 | -344 Wallace | KHS 69 F-1960 |
| -142 | 448 Beer | F-??? |
| -142 | 304 Wallace | F-??? 25X15km |
| -144 | -342 Birt | KHS 7 F-1960 |
| -145 | -307 Lassell | F-KJD 10x20km-KJD |
| -148 | 866 M. Frigoris | F-??? 16X32km |
| -148 | -265 Lassell | F.AKH |
| -152 | 863 Plato | F-CLR 18km? |
| - 155 | 783 Plato | F-CLR |
| -155 | -347 Birt | ABJC $10 \mathrm{~km}-\mathrm{KJD}$ |
| -156 | . 353 Birt | ABJC $12 \mathrm{~km} \cdot \mathrm{HDJ} .11 \mathrm{~km}-K J D$ Cleft extends half through dome |
| -162 | -347 Davy | F-WLR 4km |
|  |  | Crossed by clefl-KJD |
| -169 | -004 Sömmering | KHS 71F-1960 |
| -170 | 530 N of Timocharis | F-HDJ on Horiguchi Photo. Very small. Unresolved crater? |

Table 1. Lunar Dome Catalog (April 30, 1992 Version, provided by Harry D. Jamieson)—Continued.

| $\chi_{\text {xi }}$ | Eta Feature Near | Observer/Date/Remarks | Xi Eta Feature Near |  | Observer/Date/Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -177 | 003 Sömmering | KHS $72 \quad \mathrm{~F}$-1960 | -30 | -233 Guericke | ABJC $57-60 \mathrm{~km}$ |
| -179 | N of Timocharis F-HDJ on Horiguchi Photo. Very small |  | -305 | 670 Helicon | F-HDJ Small |
|  |  |  | -31 | 649 Helicon | F-HDJ 7 km -E2-E |
| -180 | $N$ of Timocharis | F-HDJ on Horiguchi Photo. Very small | -31 | 665 Helicon | F-HDJ 7 km -E2-E |
|  |  |  | -325 | 653 Helicon | F-HDJ Small |
| -183 | 409 Timocharis | KHS 83 F-1960 | -329 | 649 Helicon | F-HDJ 5km-HDJ E2-E |
| -183 | 344 Eratosthenes | F-KJD 10X6km-KJD | -330 | -554 In Capuanus | KHS 98 F-1960 |
| -183 | -005 Sömmering | KHS 73 F. 1960 | -340 | .441 Kies | F-HDJ 4km-HDJ E6-A |
| -185 | 854 M. Frigoris | ABJC 10km-LAC 11 | -34 | 548 Carlini | F-HDJ Small |
| -186 | 851 Fontenelle | F-??? | -34 | 582 Carlini | F-??? 4km-HDJ, |
| -186 | -353 Nicollet | KHS $82 \quad \mathrm{~F} 1960$ | -34 | 580 Carlini | F-??? 4 km -HDJ |
| -191 | 424 Timocharis | F-R Horiguchi 10 km -RH. | -34 | 574 Carlini | F-??? 4km-HDJ Don Watts |
| -191 | 320 Wallace | F-??? | -346 | -433 Kies | F-??? 5 km |
| -192 | 358 Wallace | KHS 88 F-1960 | -34 | 548 Carlini | F-HDJ Small |
| -193 | 005 Gambart B | F-??? $13 \mathrm{~km}-\mathrm{KJD}$ | -348 | 531 Carlini | F-??? |
| -197 | 488 Timocharis | F-HDJ on Horiguchi Photo. 4km-HD」. | -349 | -527 In Capuanus | KHS 100 F-1960 |
|  |  |  | -349 | -556 In Capuanus | KHS 99 F-1960 |
| -198 | 412 Timocharis | F-R Horiguchi $70 \mathrm{~km} \mathrm{~N}-\mathrm{S}$. Has -191+424 on NE Flank-HDJ | -350 | -441 Kies | FJEW (LAC-94) 7kmJEW E6-A. Seen-MWH. |
| -198 | 055 Gambart B | F-CLR | -35 | -427 Kies | F-JEW (LAC-94) $2 \times 5 \mathrm{~km}$ JEW |
| -202 | -504 In Pitatus | F-??? |  |  | E6-A. Seen-MWH. |
| -203 | 037 Gambart | KHS 76 F-1960 | -35 | -527 In Capuanus | KHS 102 F-1960 |
| -204 | 043 Gambart | KHS 78 F-1960 | -355 | 310 Draper | F-??? |
| -204 | 040 Gambart | KHS 74 F-1960 | -356 | 305 Draper | F-HDJ |
| -205 | -069 Lalande | F-KJD 8X11km-KJD | -358 | 561 Carlini | F-HDJ Small (E2-E) |
| -206 | 040 Gambart | KHS 75 F-1960 | -35 | -298 Bulialdus | F-HDJ Small. Ill-defined. |
| -206 | -503 In Pitatus | KHS 85 F-1960 |  |  | Others nearby? |
| -207 | 042 Gambart | KHS 79 F-1960 | -360 | -534 In Capuanus | KHS 101 F-1960 |
| -209 | -509 In Pitatus | F-??? KJD says at -214-507 | -362 | -460 Kies | KHS 90 F-1960 |
| -210 | 180 Stadius | KHS 84 F-1960 | -362 | -527 Capuarus | KHS $103 \mathrm{~F}-1960$ |
| -210 | -481 In Pitatus | KHS 87 F-1960 | -362 | -556 Capuanus | KHS 97 F-1960 |
| -212 | 049 Gambart B | $\frac{\text { ABJC }}{\frac{21 \mathrm{~km}}{28 \mathrm{~m}} \text { high-HDJJ. }}$ | -362 | -556 Capuanus | ABJC 7km-KJD (E7-D) [Dup.?] |
|  |  |  | -362 | -871 Zucchius | $A B J C$ |
| -212 | -484 Pitatus | F-KJD Cleft winds around | -363 | -562 Capuanus | KHS 91 F-1960 |
| -213 | 069 Gambart | F-??? | -365 | -561 Capuanus | KHS 104 F-1960 |
| -214 | 062 Gambart | F-??? | -366 | -453 Kies | ABJC 3km, 145m high-HDJ |
| -214 | 041 Gambart B | F-KJD | -368 | -549 In Capuanus | Wijkins \& Moore, The Moon |
| -214 | -507 Pitatus | F-AKH 10 km -KJD | -368 | -552 In Capuanus | KHS 96 F-1960 |
| -217 | -485 Pitatus | F-AKH 7km-KJD | -370 | 618 Pr. Heraclides | F-HDJ 4km-HDJ E2-E |
| -218 | 042 Gambart B | F-??? $8 \times 13 \mathrm{~km}-\mathrm{KJD}$ | -370 | -563 Capuanus | ABJC 6km-HDJ. |
| -218 | -090 Parry | F-??? |  |  | 8 km -Don Watts |
| -222 | 065 Gambart B | F-MWH DCW 3E/4G/7KM9K Low \& ditficult-MWH. | -372 | -562 In Capuanus | KHS 92 F-1960 |
|  |  |  | -373 | -281 Lubiniesky | F-HDJ 6km-HDJ E6-A. |
| -223 | Timocharis C | F-HDJ on Horiguchi Photo. Unresolved crater? |  |  | Might be a hill - HDJ |
|  |  |  | -375 | 625 Pr . Heraclides | F-HDJ (E2-E) 4km-HDJ |
| -224 | Timocharis | F-HDJ on Horiguchi Photo. Unresolved crater? HDJ | -375 | -554 Capuanus | ABJC $8 \mathrm{~km} \cdot \mathrm{KJD}$ 10X15km-Don Watts |
| -235 | -467 Hesiodus | F-??? 15-20km | -376 | -548 In Capuanus | KHS 95 F-1960 |
| . 236 | Pytheas | F-HDJ on Horiguchi Photo. 5km-HDJ Steep | -376 | -580 Capuanus | KHS 94 F-1960 |
|  |  |  | -378 | 334 Draper | F-HDJ (E3-A 6km-HDJ. |
| -240 | Timocharis | 5km-HDJ Steep F-HDJ on Horiguchi Photo. See also - $223+419$ |  |  | Double pit |
|  |  |  | -378 | -428 König | F-HDJ |
| -243 | 082 Whewell | F-HDJ? | -378 | -549 Capuanus | KHS 93 |
| -247 | 013 Gambart | ABJC 13 km JEW. | -378 | -560 Capuanus | ABJC $15 \times 10 \mathrm{~km}$-KJD |
| -250 | 021 Gambart | ABJC 10 km -JEW | -379 | -433 Kies | KHS 106 F-1960 |
| -251 | -771 Longomontanus | S KHS 107 F-1960 | -379 | -438 Kies | KHS 105 F-1960 |
| -254 | 915 Carpenter | F-MWH DW 2A/4F/7km-MWH. | -383 | -445 Kies | F-??? 8km |
| -257 | 030 Gambart | F-??? 20km | -38 | -439 Kies | F-??? |
| -262 | Leverrier | Ref S\&T 29,5 p. 294. | -38 | -442 Kies | F-??? |
|  |  | Many others possible in area | -385 | -306 Lubiniesky | F-HDJ (E6-A) 5 km -HDJ |
| -274 | -405 Wolf | F-CLR | -385 | -555 Capuanus | ABJC 9 km -KJD |
|  |  | Low slope, Irreg. outline. CLR. | -388 | -420 König | F-HDJ? |
| -275 | 009 Gambart | F-HDJ? 6km-HDJ | -389 | 321 Draper | F-HDJ $5 \mathrm{~km} \cdot \mathrm{HDJ}$ |
| -290 | 008 Gambart | F-HDJ Very uncertain. | -390 | -433 König C | F-HDJ 5 km -HDJ |
|  |  | Could be same as -295+016. | -39 | 632 Pr. Heraclides | F-HDJ (E2-E) 4km |
| -295 | 701 Pr. Laplace | F-HDJ (E2-E) 7 km | -397 | -418 König | F-HDJ |
| -295 | 016 Gambart | F-HDJ Doubtful- HDJ See -290+008. | -400 | 684 Pr. Heraclides | F-HDJ (E2-E) 3km-HDJ |
|  |  |  | -40 | -023 Lansberg | KHS 123 F-1960 |
| -296 | 678 Helicon | F-HDJ (E2-E) 5 km | -404 | -020 Lansberg | KHS 126 F-1960 |
| -297 | 008 Gambart | F-HDJ at -295+016 V. uncertain | -405 | -401 König | F-??? |
| -297 | -475 Hesiodus-Kies | FJO 15X22km-KJD | -406 | -018 Lansberg | KHS 127 F-1960 |
| -300 | 290 Pytheas | F-CLR Portion of a ridge- MWH | -407 | -015 Lansberg | KHS 121 F-1960 |
| -301 | 019 Gambart | ABJC | -409 | -060 Lansberg | F-HDJ? 29km-HDJ |

Table 1. Lunar Dome Catalog (April 30, 1992 Version, provided by Harry D. Jamieson)—Cont/nued.


Table 1. Lunar Dome Catalog (April 30, 1992 Version, provided by Harry D. Jamieson)—Continued.


| Xi | Ela Feature Near | Observer/Date/Remarks |
| :---: | :---: | :---: |
| -790 | 191 Reiner | F-JEW (LAC-56) 5 km -JEW. Confirmed-HDJ F4-D. |
| -791 | 183 Reiner | F-JEW (LAC-56) 5km-JEW. Contirmed-HDJ F4-D. |
| -793 | 461 Briggs | F.??? 43 km |
| -793 | 133 Reiner | F-CP 08/22/72 5km-Cireular \& flat |
| -802 | 158 Reiner | F-JEW (LAC-56) Seen-HDJ F4-D. 5 km |
| -803 | -094 Fused w/-812-0 | 096 \& -814-096 KHS 158 F-1960 |
| -804 | -365 de Vico | F-Leslie Rae 14km-KJD LAC 92 |
| -812 | -096 Fused w/-814 | 096 \& -803-094 KHS 156 F-1960 |
| -813 | 141 Reiner | F-CLR ConfirmedJEW\& CP 7 km . KJD says $3: 1$ aspect |
| -814 | -096 Fused w/-812-0 | 096 \& -813-094 KHS 157 F-1960 |
| -819 | 134 Reiner | KHS 154 F-1960 |
| -827 | -418 Byrgius | F-KHS (Uncataloged) |
| -840 | 161 Reiner | F-??? SeenJEW |
| -863 | -176 Sirsalis | F-HDJ |
| -884 | -326 Darwin | F-Eimer Reese 45-50km-KJD |
| -885 | 046 Hevelius | F-CP 10 km |
| -888 | 055 Hevelius | F-CP Low, Irreg. 13km |
| -891 | -182 S. of Grimaldi | F-HDJ F5-E |
| -892 | -188 S. of Grimaldi | F-HDJ F5-E |
| -893 | -051 Grimaldi | F-HDJ F5-E |
| -894 | -333 ln Darwin | KHS 159 26KM |
| -895 | 059 Hevelius | ABJC May run into -888+055 |
| -896 | -185 S. of Grimaldi | F-HDJ F5-E |
| -898 | -199 S. of Grimaldi | F-HDJ Seen-T. Hansen 11/30/71. F5-E |
| -899 | -171 S. of Grimaldi | F-HDJ F5-E |
| -900 | 144 Cavalerius | BAA 37 km -LAC-56 |
| -900 | 005 Cavalerius | ABJC $20 \times 25 \mathrm{~km}$-KJD |
| -901 | -168 S. of Grimaldi | F-HDJ |
| -901 | -175 S. of Grimaldi | F-HDJ F5-E |
| -901 | -178 S. of Grimaldi | F-HDJ F5-E |
| -902 | -185 S. of Grimaldi | F-HDJ F5-E. Seen-T. Hansen |
| -903 | -170 S. of Grimaidi | F-HDJ F5-E |
| -904 | -176 S. of Grimaldi | F-HDJ F5-E |
| -906 | -168 S. of Grimaldi | F-HDJ F5-E |
| -908 | . 049 Grimaldi | F-HDJ F5-E |
| -908 | -167 S. of Grimaldi | F-HDJ F5-E |
| -912 | -030 Grimaldi | F-HDJ F5-E |
| -921 | 038 Hevelius | F-HDJ 2 km |
| -922 | -061 Grimaldi | F-KJD ACIC |
| -923 | 012 Hevelius | F-HDJ 6km |
| -929 | -078 Grimaldi | F-KJD ACIC |
| -930 | 140 Cavalerius | F-??? |
| -931 | -071 Grimaldi | F-KJD F5-D LAC-74 shows double ( 28 km \& 17 km ) |
| -933 | -082 Grimaldi | F-KJD AClC |
| -935 | -088 Grimaldi | F-HDJ |
| -947 | -313 Veris Alpha | F-JEW 9km |

## Notes

XI and Eta are E-W and N-S lunar rectangular coordinates, in thousandths of a lunar radius. The right-hand column gives the observer who discovered the dome and the date of discovery, when known. $\mathbf{F}$ stands for "found." Cades in the format DW/1D/4G are dome classifications as described in: Westfall, J. (1964), "A Generic Classification of Lunar Domes," J.A.L.P.O., 18, Nos. 1-2 (July), 15-20. Entries in the form F4-D refer to plates in: Kuiper, G.P. (1960) Lunar Photographic Atlas (Chicago: U. of Chicago Press); LAC refers to Lunar Aeronautic Charts. Dome diameters are given in km ; heights in m . The abbreviations used for observers are: $\mathrm{ABJC}=$ A.L.P.O.-B.A.A. Joint Catalog; AKH $=$ Alika $K$ Herring; CLR $=$ Charles $L$ Ricker; $C M=$ Craig MacDougal; CP = Chet Patton; HDJ = Harry D Jamieson; JA = Joseph Ashbrook; JEW = John E Westfall; JHP = James H Phillips; JO = José Olivarez; KHS = Kenneth H Schneller (with his catalog number); KJD $=$ Kenneth J Delano; MWH = Marvin W Huddleston; RCP = Roy C. Parish RJW = Richard $J$ Wessling; and $W L R=W L$ Rae (BAA).

## Coming Solar-System Events: October-December, 1992

## What To LOOK FOR

This column is intended to alert our readers about upcoming events in the Solar System; giving visibility conditions for major and minor planets, the Moon, comets, and meteors. You can find more detailed information in the 1992 edition of the A.L.P.O. Solar System Ephemeris. (See p. 144 to find out how to obtain this publication.) Celestial directions are abbreviated. All dates and times are in Universal Time (UT). For the time zones in the United States, UT is found by adding 10 hours to HST (Hawaii Standard Time), 9 hours to AST (Alaska Standard Time), 8 hours to PST, 7 hours to MST, 6 hours to CST, and 5 hours to EST. Note that this addition may well put you into the next UT day!

## Planets: Saturn Slipping, Mars Ascending

Saturn's visibility is now restricted to the evening; it continues to lie in Capricomus, and will disappear into the sunset twilight near the end of the year. The (obviously) Ringed Planet is shrinking and dimming slightly, diminishing from $18^{\prime \prime}$ to $16^{\prime \prime}$ (" = arc-seconds) in equatorial diameter, and from visual magnitude +0.5 to +0.8 during October-December. The Rings remain well-presented, with the Earth $16-17^{\circ}$ above their $N$ face; their major axis shrinks from $40^{\prime \prime}$ to $35^{\prime \prime}$, and their minor axis from $12^{\prime \prime}$ to $10^{\prime \prime}$ during this period.

The Remote Planets Uranus and Neptune are both in Sagittarius, about $25^{\circ} \mathrm{W}$ of Saturn, and are thus also visible in the evening sky, if only until about the end of November. Uranus is at magnitude $+5.7-5.8$, about $3^{\prime \prime} .6$ in diameter, and should be visible to the naked eye at a dark site. At magnitude +7.9 , Neptune requires binoculars to locate. Pluto is effectively invisible as it is in conjunction with the Sun on NOV 15.

The planet Mars is now worth following (see p. 97 of this issue). In Gemini, the Red Planet rises after midnight in October, but this event occurs earlier each night until Mars rises in the early evening at the end of the year as it approaches opposition on 1993 JAN 07. Mars' northerly declination makes it readily visible from our Northern Hemisphere, and indeed its own Northern Hemisphere is well presented to us as the disk diameter increases from $8^{\prime \prime}$ on OCT 01 to $15^{\prime \prime}$ by the end of the year. At the beginning of our period, Mars' phase is quite obvious ( 87 percent illuminated) but gradually becomes 100 percent "Full" by year's end as its magnitude brightens from about +0.3 to -1.4.

Venus is finally gaining respectable altitude in the evening twilight, with its solar elongation increasing from $29^{\circ} \mathrm{E}$ on 1992 OCT 01 to $46^{\circ} \mathrm{E}$ at the end of December. Dur-
ing the same period, the disk diameter increases from $12^{\prime \prime}$ to $20^{\prime \prime}$, as its phase drops from 87 percent illuminated to 60 percent, and the planet brightens slowly from magnitude - 3.9 to -4.3.

Jupiter is now in Virgo and begins to be observable in the predawn sky in November. During November and December, the Giant Planet's disk grows from $32^{\prime \prime}$ to $36^{\prime \prime}$ in equatorial diameter and brightens slightly from magnitude -1.7 to -1.9.

Two apparitions of Mercury occur in these three months. The first is an evening one, and is favorable for observers in the Southern Hemisphere. It is centered on 1992 OCT 31, the date of Greatest Eastern Elongation ( $23^{\circ} .7$ ), although the planet will be at least $15^{\circ}$ from the Sun between OCT 07-NOV 14, with dichotomy (half-phase) predicted for Nov 05,20h. Mercury's second apparition is a morning one, but favorable for NorthernHemisphere observers. Greatest Western Elongation is on 1992 DEC 09, with the planet then $20^{\circ} .9$ from the Sun, and at elongation $15^{\circ}$ or greater from NOV 30-DEC 27, and dichotomy is predicted for DEC $05,23 \mathrm{~h}$.

There are no truly close planetary conjunctions during this period, although there are three "binocular conjunctions": (1) Venus (Mag. -4.1, $41^{\circ} \mathrm{E}$ of the Sun) passes $1^{\circ} .9 \mathrm{~S}$ of Uranus (Mag. +5.8 ) on NOV 26, 12h; (2) One day later, Nov 27, 13h, Venus (Mag. -4.1, Elong. $41^{\circ} \mathrm{E}$ ) passes $3^{\circ} \mathrm{S}$ of Neptune (Mag. +7.9 ); and (3) Venus (Mag. -4.2, Elong. $45^{\circ} \mathrm{E}$ ) passes $1^{\circ} .1 \mathrm{~S}$ of Saturn (Mag. +0.8) on DEC 21, 16h.

## Minor Planets

Three of the brighter minor planets reach opposition during 1992 OCT-DEC. Their 10day ephemerides are given in the 1992 edition of the A.L.P.O. Solar System Ephemeris, and their opposition data are given below:

| Minor Planet | Opposition Data |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1992 \\ & \text { Date } \end{aligned}$ | Stellar Magnitude | Declination\& Constellation |
| 39 Laetitia | Nov 15 | +9.6 | $2{ }^{\circ} \mathrm{N}$ Cet |
| 349 Dembowska | Dec 02 | +9.7 | $30^{\circ} \mathrm{N}$ Tau |
| 3 Juno | DEC 28 | +7.7 | $0^{\circ}$ Mon |

Besides the objects above, two of the remaining "Big Four" minor planets, 1 Ceres, and 4 Vesta will be brighter than Mag. +10 during at least part of the current period.

In early December, the minor planet 4179 Toutatis passes unusually close to the Earth, moving rapidly across the sky and brightening to 9 th or 10 th magnitude. Its ephemeris is given for every day for most of December and every 2 days for most of January in the 1992 A.L.P.O. Solar System Ephemeris (p. L-4).

## THE MOON

During the current period, the schedule for the Moon's phases is:

| New Moon | First Quarter | Full Moon | Last Quarter |
| :---: | :---: | :---: | :---: |
| SEP 26.4 | OCT 03.6 | OCT 11.8 | OCT 19.2 |
| OCT 25.9 | Nov 02.4 | Nov 10.4 | Nov 17.5 |
| Nov 24.4 | DEC 02.3 | DEC 10.0 | DEC 16.8 |
| DEC 24.0 | JAN 01.2 | JAN 08.5 | JAN 15.2 |

The underlined dates indicate eclipses, described later, while those in italics fall in 1993. The four lunations listed above constitute Numbers 863-866 in Brown's series.

The other significant lunar visibility condition is the Moon's librations, or E-W and $\mathrm{N}-\mathrm{S}$ tilts in relation to the Earth. Extreme librations occur on the following dates:

| North | East | South | West |
| :---: | :---: | :---: | :---: |
| SEP 26 | OCT 01 | Oct 10 | Oct 16 |
| OCT 23 | OCT 29 | Nov 06 | Nov 11 |
| Nov 19 | Nov 25 | DEC 03 | DEC 08 |
| DEC 17 | DEC 22 | DEC 30 | JAN 05 |

Our lunar E and W directions follow the usage of the International Astronomical Union, with Mare Crisium near the east limb.

Favorable libration-lighting conditions for viewing the E limb occur on SEP 30-OCT 04 and OCT 28-31. The SW limb will be wellpresented on OCT 11-12, NOV 09-11, and DEC 09. Worthwhile dates for viewing the lunar S polar area are OCT 07-13 and NOV 03-09. Besides the favorable southerly libration on those dates, the Sun will lie about $1^{\circ} .5 \mathrm{~S}$ of the Moon's equator during the first period, and $1^{\circ} .0 \mathrm{~S}$ during the second; a condition helpful in illuminating the south polar region. Note also that the librations tabulated in the ephemerides are geocentric, and can differ by up to
$1^{\circ}$ from the topocentric librations that one sees from a particular observing location.

## Planetaryand Lunar Occultations

Major and minor planets will occult 13 stars in 1992 OCT-DEC. Table 1 (below) lists the date, occulting object, visual magnitude of planet followed by that of the star, and possible zone of visibility for each occultation.

For the lucky observers who happen to lie in the occultation tracks under night skies, the NOV 25 event will be visible in binoculars, and the NOV 23 occultation of Omicron Leonis will be visible to the naked eye!

The Moon passes in front of two planets in two days; both events are visible from approximately the same area. The first occurs on OCT 27 , near 15 h when the waxing crescent Moon occults Mercury; the planet will be at Mag. $-0.2,23^{\circ} \mathrm{E}$ of the Sun. The occultation track includes the E United States and Canada, the Caribbean, N and W Africa, and southernmost Europe; only the easternmost portions of the track will witness the event after sunset. The table below gives information for three selected locations. Note that it will be hard to find a place where both disappearance and reappearance can be seen with the Sun down!
Lunar Occultation of Mercury, 1992 Oct 27.-

|  | Disappearance |  | Reappearance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Site | UT Alt. ${ }^{\text {a }}$ | Alt, Q |  | D | Q |
|  | h |  | h |  |  |
| New York | $13.3-2^{\circ}$ | +19 | 14.4 |  | +28 ${ }^{\circ}$ |
| , | $16.1+12^{\circ}$ | +20 | 17.0 | $+4^{\circ}$ |  |
|  | $16.2+{ }^{\circ}$ |  | 17.0 |  |  |

For those suitably located, the next day's occultation (OCT 28, ca. 15h) will be easier to

Table 1. Occultations of Stars by Planets, 1992 OCT-DEC. (For further information, consult the A.L.P.Q. Solar System Ephemeris: 1992 or Sky \& Telescope, January, 1992, p. 76.)

| $\begin{gathered} 1992 \\ \text { UT Date } \\ \hline \end{gathered}$ | Occulting Obiect | $\frac{\text { Visual Mag. }}{\text { Object Star }}$ | Predicted Visibility Zone |
| :---: | :---: | :---: | :---: |
| OCT 26.13 | 532 Herculina | +11.3 +9.2 | SW Canada, W U.S.A.? |
| 29.89 | 164 Eva | +10.8 +8.5 | Siberia, Cen. Asia, China |
| 30.57 | 1 Ceres | +9.0 +8.8 | SW-Cen.-N Australia |
| 31.30 | 455 Bruchsali | +12.3 +9.5 | Canada, Alaska |
| Nov 12.36 | 524 Fidelio | +12.7 +9.5 | NU.S.A. |
| 23.38 | 248 Lameia | +14.7 +3.5 | Alaska, N Canada, NW Africa |
| 25.01 | 41 Daphne | +13.0 +6.4 | India, Cen. Africa, Cen. South America |
| 26.93 | 105 Artemis | +12.9 +9.4 | NE U.S.A., Spain, Portugal |
| DEC 06.75 | 41 Daphne | +12.9 +9.1 | SE Asia, Africa |
| 07.01 | Venus | $-4.1+9.1$ | Cen North America, South America |
| 17.13 | 36 Atalante | +11.8 +8.1 | Cen. U.S.A., Canada, N Atlantic, N \& E Europe, Middle East |
| 17.48 | Mercury | $-0.5+8.0$ | NE U.S.A., SE Québec |
| 28.07 | 324 Bamberga | +12.9 +9.1 | CIS (former USSR), Turkey, Africa |

see. It involves Venus, at Mag. -4.0 and $35^{\circ} \mathrm{E}$ of the Sun. The Caribbean; northernmost South America; W, central, and E Africa; and the Arabian Peninsula will see this event. Again, only those in the eastern part of the track will see the occultation under twilight or dark skies. The following table summarizes the particulars of this occultation for a few selected places.


More information about these and other occultations can be had from the International Occultation Timing Association (IOTA), 1177 Collins Ave., SW, Topeka, KS 66604, U.S.A.

## COMETS

The column by Don E. Machholz, "Comet Corner," on pp. 121-122, and the A.L.P.O. Solar System Ephemeris: 1992 list eleven known comets that will be visible during at least part of this period. Of these, ShoemakerLevy (1991a1), P/Ciffréo, and P/Schaumasse may be as bright as at least 12 th magnitude and thus should be readily visible in amateur instruments under dark skies.

The above is a conservative statement of comet visibility as it of course does not take into account any discoveries that may be made after this column is written! [For example, see page 140 for the recovery announcement about Comet P/Swift-Tuttle.]

## METEOR SHOWERS

(Contributed by Robert D. Lunsford, A.L.P.O. Meteors Recorder; October data added by Editor)

October: Near the beginning of the month, conditions will be favorable for the Annual Andromedids, whose maximum on OCT 03 occurs with a 7 -day Moon that will set about midnight. Sadly, the same cannot be said for the North Piscids because a 17 -day waning gibbous Moon occurs on their maximum date, OCT 13. However, occasional meteors from either of these two showers can be expected throughout the first part of the month.

The major October shower, though is the Orionids, which peak on OCT 21.4 with a waning crescent (25-day) Moon. This is a brief shower, with only a 2 -day span, but with zenithal rates often reaching 15 per hour. These meteors tend to be fast ( $66 \mathrm{~km} / \mathrm{sec}$ ) and often leave long-lasting trains.

November-December: The Leonids reach maximum activity on NOV 17 this year. Un-
fortunately, a bright last-quarter Moon will be located close to the radiant, reducing the number of meteors visible that morning. To see the highest rates, face N with the Moon at your back and catch the Leonids that are visible in that portion of the moming sky.

The Geminids peak in activity on DEC 14 with a bright waning gibbous Moon spoiling the show. Your best bet may be to face W with the Moon behind you. Under these conditions you may expect to see up to 50 meteors per hour should your skies be transparent.

Conditions for the Ursids are very favorable this year. Stream members are visible from DEC 17-26 with maximum activity occurring on the moming of the 22nd, near New Moon. The radiant lies close to the bright star Beta Ursae Minoris (Kochab). Data are scarce for this show, so any observations obtained this year would be valuable.

Looking ahead to 1993, North America is very well situated for the Quadrantid shower, expected to peak near 10 h UT on 1993 JAN 03 with rates exceeding 100 per hour for those able to escape the areas affected by light pollution. Face the NE portion of the sky, and start counting once the waxing gibbous Moon is low enough so as not to interfere.

## Partial Solar Eclipse

There are two eclipses in December, and the total lunar one is described in some detail in the next article. However, there is also a partial solar eclipse, falling on DEC 23-24. The eclipse zone includes the N Pacific Ocean, E China, Korea, Japan, NE Asia, and W Alaska. The maximum eclipse occurs in Siberia at $155^{\circ} 45^{\prime} \mathrm{E} / 65^{\circ} 42^{\prime} \mathrm{N}$. At that point, the eclipse magnitude will be 0.843 (which means that the maximum encroachment of the Moon into the solar disk will equal 84.3 percent of the Sun's apparent diameter).

The table below gives data for the maximum phase of this eclipse for selected locations:

## Partial Solar Eclipse: 1992 Dec 23-24



## The Total Lunar Eclipse of 1992 Dec 09-10

On 1992 DEC 09-10, much of the world will see the first total lunar eclipse since February, 1990. At the middle of this eclipse, the Moon will be overhead as seen from Algeria; what this means is that observers throughout the Arctic, eastern Canada, Africa, Europe, the Middle East, and most of the CIS will be able to see the entire eclipse. Besides those areas, India, central Asia, eastern South America, and the eastern United States can at least watch all of the total phase. The remainder of the Americas and Asia will see the partial and penumbral phases only. Although this may be disappointing for many observers in the United States and east Asia, note that people in those locales will be able to see the eclipsed Moon low in the east after sunset (Western Hemisphere) or in the west before sunrise (Eastern Hemisphere); some spectacular photographs can be expected.

At mid-eclipse, the umbral magnitude will be approximately 1.276 . That means that the Earth's umbral shadow will cover the entire Moon and indeed extend 0.276 lunar diameters outside the limb of the Moon. For total lunar eclipses, the Universal Times of seven eclipse events are usually tabulated:

| Penumbral Phase Begins | DEC 09, 20h 55.4 m |
| :--- | :--- |
| Partial Phase Begins | DEC $0,21 \mathrm{~h} 59.4 \mathrm{~m}$ |
| Totality Begins | DE 09, 23h 06.8 m |
| Middle of Eclipse | DEC 09, 23h 44.1 m |
| Totality Ends | DEC $10,00 \mathrm{~h} 21.5 \mathrm{~m}$ |
| Partial Phase Ends | DEC $10,01 \mathrm{~h} 28.8 \mathrm{~m}$ |
| Penumbral Phase Ends | DEC $10,02 \mathrm{~h} 32.7 \mathrm{~m}$ |

The beginning and ending penumbral phases are essentially unobservable, except by a photometer. Do not expect to see faint penumbral shading on the Moon's east limb (celestial east and west are used here) until about 21:30-40 UT on DEC 09, and on the west limb after about 02:00-10 UT on DEC 10 .

The partial phase begins with First Umbral Contact on the lunar east limb. When the Second Umbral Contact occurs, on the northwest limb, the total phase begins. At Third Umbral Contact, on the northeast limb, the total phase ends. Finally, the partial phase comes to an end at Fourth Umbral Contact, on the lunar west limb.

To some extent, the size and the darkness of the penumbra and umbra vary unpredictably from eclipse to eclipse; the times above assume that the Earth's atmosphere causes a 2 -percent enlargement from what simple geometry would predict. In order to find out more about the variation of the umbra between eclipses, its diameter can be fairly accurately by timing the actual times of the four umbral contacts. These events can be timed in binoculars, but a small telescope magnifying 40 $100 \times$ and showing the entire Moon in the eyepiece field is really the ideal instrument for these and many other eclipse observations.

Observers with such instruments can further refine our umbral diameter measurements
by timing when the umbral edge crosses selected craters, which is best done by timing when the shadow edge touches each side of the crater and taking the mean of those two times. To help plan such timings, below is a table of recommended umbral-timing craters, with the approximate Universal Times of crater disappearance into ("Dis."; all on DEC 09) and reappearance from ("Rea."; on DEC 10) the umbral shadow. To ensure correct crater identification, consult a lunar map before and during the eclipse if you are uncertain.

| Crater | Dis. Rea. | Crat | Dis. Rea |
| :---: | :---: | :---: | :---: |
| Grimaldi | 22:0500:30 | Aristotele | 22:5500 |
| Aristarchus | 22:2500:30 | Eudox | 22:5500:55 |
| Kepler | 22:2000:40 | Manilius | 22:4001:00 |
| Copernicus | 22:2500:45 | Menelau | 22:4501:05 |
| Pytheas | 22:3000:45 | Plinius | 22:5001:10 |
| Timocharis | 22:3500:45 | Taruntius | 22:5501:20 |
| Tycho | 22:2001:00 | Proclus | 22:5501:2 |
| Plato | 22:5000:40 |  |  |

It is likely that the DEC 09-10 lunar eclipse will be an unusually dark one because the volcanic aerosols in our stratosphere that blackened the umbra in the 1992 JUN 15 partial lunar eclipse will probably still be present. Thus, records of the umbra's tone and color will be quite valuable.

Such records include drawings and photographs, as well as video or digital CCD images. Be prepared to make long exposures, however!

Even written comments on the brightness of the eclipsed Moon can be valuable. One standard means to do so is to make a numerical estimate using the Danjon Luminosity Scale ( $L$ ) at mid-eclipse, as follows:

$$
\begin{aligned}
& \mathrm{L}=0: \begin{array}{l}
\text { Very dark eclipse; Moon almost invisible, } \\
\\
\text { especially at mid-eclipse. }
\end{array} \\
& \mathrm{L}=1 \text { ( Dark eclipse, gray or brownish coloration; } \\
& \text { details distinguishable only with difficulty. } \\
& \mathrm{L}=2 \text { ( } \begin{array}{l}
\text { deep red or rust-colored eclipse, with a } \\
\\
\text { very dark central umbra and the outer } \\
\text { edge of the umbra relatively bright. }
\end{array} \\
& \mathrm{L}=3: \begin{array}{l}
\text { Brick-red eclipse; usually with a bright or } \\
\text { yellow rim to the umbra. }
\end{array} \\
& \mathrm{L}=4: \begin{array}{l}
\text { Very bright copper-red or orange eclipse; } \\
\text { with a bluish very bright shadow rim. } .
\end{array}
\end{aligned}
$$

It is also possible to make measurements of the brightness of the lunar disk as a whole by companson with other celestial objects whose magnitudes are known. The problem here is to make the disks of the Moon and the comparison object similar in size. If you are very nearsighted, just remove your glasses and you can compare the out-of-focus disks of bright stars directly with the similar-sized lunar disk. Some observers have used the Moon's reflection in a convex mirror, which
makes the Moon appear star-like but which must be calibrated through experiment. Otherwise, you might view the Moon through reversed binoculars, which will both shrink and dim the Moon's disk. If we allow a 25 -percent light loss in the binoculars ( .24 magnitudes), binoculars of the following magnifications will dim the Moon's brightness by the following amounts, as expressed in magnitudes:
$7 \times \ldots 4.5 \mathrm{Mag}$.
$8 \times \ldots$ 4.8 Mag.
10X ... 5.3 Mag.
11×... 5.5 Mag.
16× ... 6.3 Mag.
20X ... 6.8 Mag.
If the comparison object and the Moon are at significantly different elevations, one must correct for differential extinction. At this point, we suggest that you obtain a copy of the A.L.P.O. Lunar Eclipse Handbook (at $\$ 4.00$ cost, including postage) from Francis $G$. Graham, our Lunar Eclipse Recorder (address on inside back cover). This publication also gives information on other forms of lunar eclipse observation.

Naturally, Iunar eclipse photometry is impossible without knowing the magnitudes of comparison objects. Figure 28 (to
right) shows the brighter stars, and the planet Mars, in relation to the Moon during this eclipse. If the eclipse is very dark, you may need to try to compare the Moon with the fainter stars shown in Figure 29 (bottom), which is on a larger scale.

Whatever form your lunar eclipse observations take, they will be of value only if communicated to others; particularly to our Lunar Eclipse Recorder, Mr. Graham.


Figure 28. The sky in the vicinity of the totally eclipsed Moon on 1992 Dec 09 10. The magnitudes of selected objects are given in tenths of magnitudes without decimal points (e.g., "16" means +1.6 .). The mean magnitudes of objects of variable brightness are shown in parentheses. North at top.

Figure 29. Detailed view of the vicinity of the Moon at mid-eclipse, 1992 Dec 09, 23h 44.1 m UT, showing stars to magnitude +6.2 and the open star cluster NGC 1746. Magnitudes are shown as in Figure 28. The extent of the Earth's umbra is indicated by dark shading; that of the penumbra by lighter shading; both in scale with the disk of the Moon. North at top.


# OUr Readers Speak: <br> Schmidt-Cassegrains and Martian Craters 

(As always, these letters have been slightly edited for style; but for content only in terms of deleting comments about particular brands of instrument; this means that the letter writers are responsible for their opinions, not the A.L.P.O.)

## Dear John:

I have followed with interest the commentary about telescope selection in recent issues of the Strolling Astronomer. The material shows the writers' high levels of knowledge, and the information is valuable to your readers.

In the July issue, however, there is a comment by Rodger Gordon that refers to the review of Schmidt-Cassegrain telescopes I wrote in Sky \& Telescope. Rodger mentions a test done some years ago by a Japanese magazine that pitted several S-C's against a 4 -inch apochromat. The test involved photographing a variable-contrast target near a light source. The apochromat won hands down. And by his own admission, Rodger uses this report to discourage interest in S-C's. He also notes that Sky \& Telescope did not conduct this type of test, and by implication suggests we may not have done a thorough job in our review.

First of all, old test data are not a good criterion for judging the telescopes made today. Even though my review is less that three years old, I'm increasingly uncomfortable about referring people to it, since the telescopes I tested have changed. As a case in point, the problem in optical baffling that Rodger mentions was corrected years ago. Even the S-C's I tested in late 1989 had no such problems.

Second, the Japanese test should show the apochromat as the winner, since the test concentrated on image contrast. With their moderate-tolarge central obstructions, S-C's cannot compete with an unobstructed refractor.

Last, everyone should be careful when interpreting test results. I could surely concoct a test where the S-C's would "trash" the apochromathow about one specifically for chromatic aberration or a test to determine the limiting magnitude photographed in a star cluster with a 1 -minute exposure?

Surely the contrast test mentioned by Rodger is important to planetary observers. And I clearly stated in my S-C review that if the goal is to have the best in planetary imaging, then something other than a S-C might be in order. But the foremost concern of our reviews is to look at products from the perspective of what the product is intended to do. And in the case of the S-C, we looked at it as a general-purpose telescope. Indeed, as was stated in my review, S-C's are quite possibly the best general-purpose telescope ever manufactured.

Dennis di Cicco
Associate Editor, Sky \& Telescope P.O. Box 9111, Belmont, MA 02138-1200

September 2, 1992

## Dear John:

It appears that an entertaining new controversy has been raised by William Sheehan's article in the July, 1992 issue of Sky \& Telescope concerning the visibility of Martian craters in earthbound telescopes. In that article, Sheehan discussed John Mellish's claim that both he and E.E. Barnard actually saw craters as such on Mars in the early years of this century using the 36 -inch and 40 -inch refractors at Lick and Yerkes Observatories, respectively. Additional fuel was provided by Rodger

Gordon's letter in the October issue of $S \& T$, in which he cites other observers of Martian craters, referring to three articles he wrote on the subject all of which, alas, appeared in the post-Mariner era. Is this yet another egregious example of clairvoyance after the fact?

In assessing the observational record, we must be absolutely clear about the distinction between "speculating," "predicting," or "surmising" that dark spots on Mars might be craters, certainly a reasonable premise, and actual observational verification of that premise. Sheehan points out that none of the dark oases in Barnard's drawings correspond to known craters, although several do correspond to the huge volcanos along the Tharsis Ridge. Of particular significance, the sketches by Barnard in the S\&T article do not, by any stretch of the imagination, portray the prominent oases as craters or volcanos. They are simply drawn as conspicuous dark circular features, much the way many of us have seen them with more modest equipment. Nor has any reference to "craters" been found in Barnard's observing notes. If Barnard really did draw craters, those sketches have apparently been lost.

It appears to have been Mellish who really championed the notion of Martian craters, claiming to have seen them with the 40 -inch Yerkes refractor at $750 \times$ in November of 1915, when Mars was still about 3 months from an aphelic opposition and must have subtended an angle of only 6-8 arc-seconds! This feat seems truly herculean even allowing for ideal seeing conditions and the enhanced relief of features near the terminator of a gibbous disk. A 40 -inch aperture in those circumstances would have resolution equivalent to $10-12$ inch telescopes when the Martian disk is about 24 arc-seconds in diameter, which occurs during the most favorable oppositions. Of course, Mellish embellished his description of the craters by calling them water-filled, which has a distinctively Lowellian flavor and renders suspect his reli ability as an observer. Be that as it may, either his imagination or his visual acuity must be credited for his clairvoyant description of Martian craters.

The above notwithstanding, the fact remains that there are no known drawings of Mars that depict craters as such. Does anyone actually know of the existence of pre-Mariner sketches or notes that unambiguously show or describe craters or volcanos on Mars? That remains the pivotal question if the issue is to be taken from the realm of speculation.

Finally, Rodger Gordon comments in his letter that he can't understand why astronomers were surprised by the Mariner-4 images of the Martian surface, given the prior observations of craters on Mars. Come on Rodger, give us a break! The surprise was not the revelation of craters (after all, Earth has craters, too), but their extreme density and the strong indication that we are looking at a very ancient, lunar-like surface. I don't know of anyone who anticipated quite that scenario in 1965, but then I suppose only a fortunate few possess Rodger's remarkable prescience.

Joel W. Goodman
3053 Pine Street, San Francisco, CA 94115
September 11, 1992

# Jupiter Update 

## Prepared By: José Olivarez and Isao Miyazaki

## QUANTITATIVE REPORT ON Jovian Long-Lived Features

## By: Isao Miyazaki

11 May, 1992
Dear Jose:
Today I sent you by separate post my recent Jupiter photographs obtained from 1992 MAR 01 to APR 23 (Photo. I.D. JWB110-92 -JWB154-92) and drift charts of rapidly-moving NTeB spots and a tiny dark spot in the SEB. During the period from March to April, the weather was rather bad at Okinawa.

The south edge of the NTeB continues to be very active from November, 1991. I observed 13 dark spots (or projections) on the NTeBs. They had moved with the North Temperate Current C. Some of them were very short-lived.

A tiny dark spot has been observed in the SEB since November, 1991. It was approaching the $p$. [preceding] end of the Red Spot at $+0^{\circ} .25$ per day in System II longitude (i.e., at a velocity, $\mathbf{u}$, of $-7 \mathrm{~m} / \mathrm{s}$ in System III) from 1991 Nov 18 to 1992 Jan 28, and was expected to reach the Red Spot Bay by the end of February. However, it reduced speed in February and began to prograde [decrease] in System II longitude after the middle of March. From 1992 MAR 21 to APR 17, this spot's System II longitude decreased by $-0^{\circ} .32 /$ day $(\mathbf{u}=+1 \mathrm{~m} / \mathrm{s})$. The mean zenographic latitude ("Lat.") of this spot was measured as follows, along with the System II daily drift rate ("Drift"):

|  | $\begin{aligned} & 1991 \text { Nov } 18 \text { - } \\ & 1992 \text { JAN } 28 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1992 \text { FEB } 21- \\ & \quad \text { MAR } 14 \\ & \hline \end{aligned}$ | $\begin{aligned} & 92 \text { MAR } 21 \\ & \text { APR } 17 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Lat. | $-17^{\circ} .5 \pm 0^{\circ} .8$ | $-15^{\circ} .8 \pm 0^{\circ} .9$ | $-15^{\circ} .6 \pm 0^{\circ} .3$ |
| Drift | $+0^{\circ} .25$ | +0. 10 | -0 $0^{\circ} .32$ |

I think that this spot moved along the Red Spot Bay and drifted to lower latitudes, so it was caught by the other progressive current. During the first half of the apparition, the south part of the SEB preceding the Red Spot had been fainter than the part that followed. It appeared that the Red Spot prevented the extension of the faded SEB area. The movement of this SEB spot distinctly indicates that the Red Spot blocks the flow in the middle SEB. [Below are Mr. Miyazaki's longitude and latitude measures of selected Jovian features.]

## Table 1. Photographic Latitude and Longitude Measurements by Isao Miyazaki, 1991 OCT 11-1992 APR 20

Note: $\mathbf{p}, \mathbf{c}$, and $\mathbf{f}$ refer to the preceding end, center, and following end of features, respectively. Photograph identifications all have the prefix "JBW" and the suffix "-92." Latitudes and longitudes are in degrees.
a. Great red Spot.

|  | System lil Longitude |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date and Time | $p$ | c | $\underline{1}$ | La | hote. |
| ОСТ $1120: 51$ | 015.0 | 026.8 | 038.3 | -22.9 | 005 |
| Nov 09 20:05.5 | - | 029.7 | - | -21.5 | 011 |
| Nov 21 20:09.5 | 015.3 | 028.8 | 040.6 | -22.2 | 015 |
| Nov 21 20:20 | 015.2 | 028.5 | 040.3 | -22.9 | 017 |
| Dec 05 21:25.5 | 022.3 | 032.4 | 042.5 | -22.0 | 024 |
| JAN 11 16:56.5 | 021.5 | 032.0 | 042.6 | -22.8 | 042 |
| Jan 21 15:28 | 020.6 | 031.5 | 042.2 | -23.5 | 052 |
| JAN 28 16:04 | 023.4 | 033.6 | 043.9 | -22.5 | 060 |
| FEB 14 15:21 | 023.0 | 033.4 | 043.2 | -23.4 | 069 |
| FEB 21 15:45 | 024.8 | 034.8 | 044.8 | -23.5 | 073 |
| FEB 26 15:07 | 024.6 | 034.4 | 044.1 | -22.5 | 087 |
| Feb 29 12:21.5 | 021.5 | 033.2 | 045.0 | -22.1 | 104 |
| MaR 09 15:15.5 | 023.4 | 034.6 | 045.1 | -21.4 | 115 |
| MaR 12 12:55.5 | 023.2 | 034.5 | 044.9 | -21.8 | 119 |
| MaR 14 13:38.5 | 023.4 | 034.1 | 045.2 | -21.4 | 126 |
| Mar 21 14:46 | 024.5 | 035.2 | 046.0 | -21.9 | 131 |
| APR 14 14:46 | 026.4 | 036.3 | 046.0 | -22.0 | 138 |
| APR 17 11:22 | 025.4 | 035.8 | 046.8 | -22.5 | 145 |

B. OVAL FA.

| 1991-1992 UT | System II Longitude |  |  | Lat. Photo. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date and Time | p | C | $\underline{1}$ |  |  |
| OCT 13 20:48 | - | 347.6 | - | -32.1 | 006 |
| Nov 18 21:15 | 320.1 | 324.6 | 328.6 | -34.4 | 013 |
| Nov 30 20:25 |  | 324.1 | - | -34.1 | 019 |
| DEC 07 20:36 | 314.9 | 320.1 | 324.6 | -33.9 | 037 |
| JAN 28 14:06 | . | 299.0 |  | -32.4 | 058 |
| JAN $3014: 52.5$ | 295., 3 | 298.8 | 302.3 | -32.5 | 065 |
| Feb $2113: 21.5$ | 284.0 | 288.5 | 293.0 | -33.3 | 070 |
| Feb 26 12:10.5 | 281.5 | 287.0 | 292.4 | -33.9 | 080 |
| Feb 27 17:02 | . | 286., 2 | - | -34.0 | 102 |
| MAR 01 15:08 | 279.8 | 284.3 | 288.8 | -33.4 | 112 |
| MAR 14 10:31 | 277.3 | 281.0 | 284.9 | -33.3 | 123 |
| MAR 21 12:23 | . | 277.9 |  | -33.4 | 129 |
| APR $0412: 53$ | 268.8 | 272.5 | 276.2 | -32.6 | 132 |
| APR 14 11:55 | - | 267.8 |  | -33.1 | 135 |
| APR 16 12:51 | 262.4 | 266.8 | 271.0 | -33.1 | 141 |

C. OVAL BC.

| $\begin{aligned} & \text { 1991-1992 UT } \\ & \text { Date and Time } \end{aligned}$ | $\frac{y s t f}{p}$ | c | $\frac{\text { tude }}{f}$ | Lat. | 10to. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEC 06 21:29 | 193.4 | 198.2 | 202.9 | -33.1 | 033 |
| JAN 11 21:18 | 178.6 | 182.7 | 186.7 | -32.2 | 047 |
| JAN 22 15:57 | 172.8 | 177.9 | 183.0 | -33.8 | 054 |
| JAN 27 14:54 | . | 176.7 | - | -32.6 | 057 |
| Jan 29 15:28 | 170.4 | 174.9 | 179.3 | -33.7 | 062 |
| Fев 03 14:19 | . | 174.0 | - | -32.9 | 066 |
| Feb 25 12:33 | - | 164.5 | - | -33.6 | 076 |
| Feb 26 18:13 | 158.9 | 163.6 | 168.4 | -33.9 | 094 |
| Feb 27 14:01 | 159.4 | 163.7 | 168.3 | -34.2 | 097 |
| Feb 29 15:10 | 158.0 | 163.5 | 169.3 | -33.3 | 109 |
| MAR 12 15:54 | 152.6 | 157.3 | 161.9 | -32.5 | 122 |
| APR 20 12:22.5 | 135.5 | 140.2 | 144.8 | -32.4 | 150 |

(Continued on p. 137)

## D. Oval DE.


E. Long-lived Strz White Spot.

| 1991-1992 UT Date and Time | S |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nov 03 20:25.5 |  | 223.1 |  | -21.8 | 009 |
| Dec 04 21:16.5 | 224.5 | 232.1 | 238.6 | -20.8 | 022 |
| Dec 07 19:19.5 | 222.6 | 230.0 | 236.9 | -21.6 | 034 |
| Jan 20 16:03 |  | 238.5 |  | -20.8 | 051 |
| Jan 22 16:50 | 237.0 | 242.0 | 247.2 | -20.4 | 055 |
| JAN 29 16:40.5 |  | 243.5 |  | -19.7 | 06 |
| Jan $3013: 44.5$ |  | 243.0 |  | -21.1 | 064 |
| Feb 25 15:01 | 244.6 | 249.3 | 253.9 | -19.4 | 078 |
| Feb 27 17:02 | 243.1 | 248.6 | 254.0 | -20.0 | 102 |
| MAR 01 14:13 |  | 251.1 |  | -18.5 | 111 |
| MAF 14 10:31 |  | 254.4 |  | -18.8 | 123 |
| MAR 21 10:40 |  | 256.8 |  | -19.8 | 128 |
| APR $1411: 55$ |  | 260.7 |  | -18.5 | 135 |
| APR 16 12:51 |  | 261.6 |  | -19.1 |  |

## F. Small Dark Spot in the SEB(S).

1991-1992 UT System II Longitude
Date and Time c Sep. from RSp Lat. Phote.

| Nov 18 21:15 | 351.7 |  | -16.9 | 013 |
| :---: | :---: | :---: | :---: | :---: |
| Nov 30 21:33 | 353.7 |  | -18.1 | 020 |
| DEC 05 21:11 | 354.7 | 27.6 | -17.0 | 024 |
| Dec 24 21:06.5 | 002.5 |  | -19.0 | 040 |
| JAN 11 16:20 | 007.1 | 14.4 | -18.3 | 041 |
| Jan 12 21:27 | 007.6 |  | -17.0 | 049 |
| Jan 21 15:28 | 009.9 | 10.7 | -16.7 | 052 |
| Jan 28 16:04 | 012.1 | 11.3 | -17.3 | 060 |
| Feb 21 15:45 | 015.8 | 9.0 | -16.8 | 073 |
| Feb 26 14:16.5 | 016.9 | 7.7 | -16.9 | 084 |
| Feb29 12:21.5 | 016.5 | 5.0 | -15.0 | 104 |
| MAR 09 14:08.5 | 017.6 | 5.8 | -15.8 | 114 |
| MAR 12 12:55.5 | 018.4 | 4.8 | -15.1 | 119 |
| MAR 14 13:38.5 | 017.9 | 5.5 | -14.9 | 126 |
| MAR 21 13:29 | 015.6 |  | -15.6 | 130 |
| APR $0415: 04$ | 010.9 |  | -15.9 | 134 |
| APR $1413: 55$ | 008.3 | 18.1 | -15.3 | 137 |
| APR 16 15:04 | 007.7 |  | -15.4 | 143 |
| APR 17 11:22 | 006.1 | 19.3 | -15.0 | 145 |

Figure 30 (upper right) graphs the System II longitude changes of the Great Red Spot and the SEB Dark Spot. Notice that the SEB Dark Spot approached the preceding edge of the Great Red Spot until early March, 1992, and then moved away. The latitude variations of the SEB Dark Spot are graphed for about the same period in Figure 31 (lower right).


Figure 30. Variations in System II longitude of the Great Red Spot and the SEB Dark Spot, October, 1991 - April, 1992. Based on photographic measurements by Isao Miyazaki.


## Bоoк Reviews

## Edited by José Olivarez

Solar Astrophysics. By Peter Foukal. John Wiley \& Sons, Inc., 605 Third Avenue,
New York, NY 10158. 1990.475 pages.
Price $\$ 64.95$ cloth (ISBN 0-471-82935-3).

## Reviewed by Richard E. Hill

For years, the textbook by Dr. M. Zurich was the only technical treatise commonly available that exhaustively covered the astrophysics of the Sun. Solar Astrophysics by Peter Foukal now provides a second such text, although aimed more at the graduate student.

Dr. Foukal has been a user of our Solar Section's data, and so I looked forward to reading this book, which is definitely not for casual reading. It is complex and comprehensive, taking the reader to the forefront of solar research. I have heard stellar astronomers jokingly say that the problem with solar astronomy is that "there's too much data." After reading this book, one can certainly understand this sentiment! However, as Foukal points out many times throughout the book, there are many things yet unknown that offer rich research opportunities. This is undoubtedly why he continually brings us to the limits of current research, offering various theories as explanations for phenomena, yet not dogmatically presenting his favorite. I suspect that he does so in order to stimulate further investigation. Certainly it is very inspirational!

Each chapter begins with a preview of its topics, and ends with exercises and several lists of supplementary reading material, grouped by the topics dealt with in the chapter. Two aspects of the format of the book could be improved. First, the book is crammed full of highly technical astrophysics. It would be better served with a more detailed index, although this is a minor point. Second, this book cries for a glossary. Many complicated technical terms and acronyms are presented and are only sometimes defined. If the book is put down for a few days, these terms can be forgot, causing the reader to have to flip through the chapters to refresh his memory.

In general, the book moves from an interior to an exterior view of the Sun, after a brief but comprehensive historical review of solar astronomy in the first chapter. One is not so much taught a history lesson as given a tour of the milestones in solar research.

Solar Astrophysics abruptly slows down in the next few chapters as the author begins to take the reader outward. The reader is also taken from the microcosmic to the macrocosmic; in terms of physical structure and energy production and transfer. For the observational amateur astronomer, Chapters 2 through 4 will be slow going, perhaps too slow for some. At the beginning of each chapter, and throughout the rest of the book, are a few paragraphs that
may help understanding, outlining topics covered in the chapter. However, if you are not well-schooled in physics and mathematics, especially calculus, it may be better to skip to Chapter 5 at this point.

The remainder of the text is much more descriptive, and the amateur observational astronomer will probably enjoy Chapters 8-10 and 13 the most. Chapter 8 deals with the white-light activity that is observed by most solar amateurs. Unfortunately, the author uses the old Zurich Classification System for sunspots. Most solar researchers, particularly in the United States, have gone over to the McIntosh Classification System, which contains a modified Zurich Classification System. The reasons for this change have been explained in many publications by now, and are well founded. It is a pity that the newer system is not even mentioned in the book.

In Chapter 9, the author maintains the outward movement of the book, and begins with a section on the chromospheric features, followed by one on the coronal features. In both sections, the observational viewpoint is first presented, then the physics and the dynamics. Chapter 10 stays in the same general region by studying the nature and dynamics of prominences and flares. Here I was again slightly disappointed because there was no good discussion of sunspot group development and flare frequency. This problem is related to the one noted in the previous paragraph. This is not a minor point because the development of the McIntosh System has allowed the assessment of flare probability in a given sunspot group with a very high degree of accuracy.

In Chapter 13, a broader view is explored; of our Sun as one of the many billions of stars, with the topics of solar evolution and variability. In keeping with the usual format of the book, this is the last chapter, being the most external view of our star which is possible. This was probably the easiest reading of all the chapters.

The author's technique of bringing the reader to the edge of research makes speedy obsolescence inevitable in terms of the theoretical aspects of this book. This is common in textbooks, and a side-effect of educating students in such a dynamic science. Even so, the book is well illustrated; full of tables and graphs that will serve as excellent reference material for years to come.

There is no question that this book is a significant addition to solar literature. However, I do not recommend it for the occasional solar observer, or for those content to simply count sunspots. It is a serious work, designed for those intending to make solar astronomy a life's work; not a book to curl up with on those cloudy days. Nonetheless, it is a superior reference for the serious solar student.

Unusual Telescopes. By Peter L. Manly. Cambridge University Press, 40 West 20th
Street, New York, NY 10011-4211. 1991.
221 pages. Price $\$ 39.95$ cloth
(ISBN 0-521-38200-9).

## Reviewed by Richard E. Hill

No book, or any publication, since Telescope Optics by Rutten and van Venrooij has fired my imagination and telescope-making drive as much as this book. But while Rutten and van Venrooij were quite technical and fairly dry reading, this book is delightful light reading while not sacrificing technical detail.

The book is intelligently organized into chapters that describe related designs. Even the format of the book is well done, with footnotes placed on the page in which they are referenced, rather than at the end of the chapter or the book. This made for smoother reading and easier understanding. The footnoting was also quite extensive, with rarely a page lacking a footnote, and nearly all references being to Telescope Making, Sky \& Telescope magazine, The Telescope by L. Bell, or to The History of the Telescope by H.C. King.

The volume is illustrated well with photographs and drawings throughout. These, combined with the author's clear and concise writing, never left me with a problem of visualizing the instrument being discussed. Many of the photographs were published for the first time in this book, which will make it a reference of value for some time to come.

Manly's sly sense of humor comes through in many spots. The introduction is quite witty, as are the many short comments such as this one in the discussion of the Schiefspiegler telescopes on page 34,
"My children call the schiefspiegler a sheep sprinkler."
or on page 109 ,
'Lower frequency vibrations require more elaborate devices such as the one developed by Brown University. If, however, you live in California and the very ground you stand on shakes, then the solution is to move to Arizona."
A further example is his entire Chapter 9, entitled "Whimsy," which is on the lighter side of telescope design. This made for reading that was not only informative, but actually highly enjoyable.

The body of the book opens with a chapter on unusual telescope optics. It is the longest chapter, as it should be because optics are the heart of any telescope. From here on Manly has chapters on mountings, various drives, and various other concerns, including transportability. I was pleased to see, in the tradition of the classic three-volume "ATM" (Amateur Telescope Making) series of books, that this author did not favor only those solutions to problems that involved the expenditure of kilobucks. Many devices, drives, and mountings that are covered are done on nick-el-and-dime budgets. In Manly's own words
concerning one telescope,
"There are numerous plumbing
fixtures visible on the telescope and the control system is a collection of 'available parts."'
Even the relative merits of different tan-gent-arm drive systems are discussed, showing several that can be made from "available parts" found in many a workshop.

Telescope design and construction is a dynamic field. So, Unusual Telescopes is a book that will probably require periodic revisions. My only criticism of the book is the steep price that may dissuade potential readers from purchasing this thought-provoking and entertaining book. But even so, on a scale of 1 to 10, there is no doubt in my mind that Unusual Telescopes rates a solid 10 !

Venus: Geology, Geochemistry and
Geophysics. Edited by V.L. Barsukov, A.T.
Basilevsky, V.P. Volkov and V.N. Zharkov.
The University of Arizona Press, 1230 North
Park Ave., Suite 102, Tucson, AZ 85719.
1992. 421 pages, Appendices. Price $\$ 75.00$ cloth (ISBN 0-8165-1222-1).

## Reviewed by Richard W. Schmude, Jr.

This book summarizes our understanding of Venus up through the Venura 16 Mission. It is broken down into three sections: Geology, Geochemistry, and Geophysics.

The first section, Geology, is divided into nine chapters: "Volcanism," "Hot-Spot Structures," "The Lakshmi Phenomenon," "Tesserae," "Ridge Belts on Plains," "Impact Craters," "Evidence on the Crustal Dichotomy," "Global Tectonic Style," and "Resurfacing." In this section, the reader is exposed to many of the geological features on Venus, including several unusual ones.

The Geochemistry section contains three chapters: "Venusian Igneous Rock," "Chemical Processes on the Planetary Surface," and "Volatiles in Atmosphere and Crust." These three chapters deal with the chemical composition of the rocks and atmosphere of Venus, and are based largely on spacecraft data.

The third section, Geophysics, has nine chapters, and focuses mainly on the nature of the interior of Venus. Models of the interior are developed based on the planet's physical characteristics. Many of these chapters contain equations describing the thermodynamics of planetary interiors.

Next are two large appendices. The first is an "Atlas of Venus Surface Images," consisting of 98 black-and-white radar images. The second, "Names of Topographical Features on Venus," contains the names and locations of almost 400 geological features. The book ends with a list of 427 references.

My overall impression of this book is that it is both illustrated well and written well. It is tailored for the planetary scientist, but the well-informed lay person should also find this book informative.

## A.L.P.O. AFFAIRS

1992 A.L.P.O. Convention.-As stated in our last issue, the 43rd A.L.P.O. Convention will be held in Las Cruces, New Mexico. The dates selected for the meeting are ThursdaySaturday, August 5-7, 1993. Our tentative plans are for paper sessions and workshops for Thursday morning and afternoon and Friday morning, the Board/Business Meeting on Thursday in the early evening, a short field trip Friday afternoon, a banquet Friday evening, and a longer field trip on Saturday. More detailed information, including lodging and meals, will be published later. David Levy is in charge of the program and can be contacted c/o the A.L.P.O. Director. Elizabeth Westfall will handle logistics (meals, lodging, and field trips) and can be reached c/o of the same address.

Temporary Changes in the Mars Sec-tion.-Sixty percent of our Mars Section staff-Jeff D. Beish, Carlos E. Hernandez, and Donald C. Parker-live in the Miami, Florida, area; and their lives and homes suffered considerable disruption due to Hurricane Andrew. Fortunately they and their families (and their telescopes) were unhurt, but it will be some time before they can give Mars the attention it deserves. Thus: Until further notice, all Mars Section correspondence should be addressed to: Daniel M. Troiani, 629 Verona Ct., Schaumberg, Illinois 60193.

Solar Section Staff Changes.-Due to the demands of his new employment, Solar Recorder Richard E. Hill has regretfully stepped down as Solar Recorder and now has the title Acting Assistant Recorder ("Acting" until confirmed by the A.L.P.O. Board of Directors). Richard Hill will continue to work on the Solar Section Handbook and will aid the Section in other ways as well. We take this opportunity to thank Mr. Hill for his major efforts in founding the A.L.P.O. Solar Section and shepherding it through its formative years until it has become the respected solar-research organization we see today.

The previous Solar Co-Recorder, Paul Maxson, has generously agreed to move up to the position of Acting Solar Recorder, and general Section correspondence should be addressed to him. (Both Recorders' addresses are on the inside back cover.) Mr. Maxson has served the Solar Section for eight years, and will be familiar to solar observers because of his crucial role as Editor of the Solar Rotation Report, producing this report every 25.38 days.

Instrument Section Statement.-The Acting Recorder of the new Instrument Section, Michael Mattei, has furnished us with the following statement:
"The Instrument Section was formed to help members with problems they may have with their telescopes and optics. The Recorder expects to provide an optical testing service for the members. He has the equipment to test mirrors using the Foucault Test and auto-collimation for up to 10 -inch mirrors. As for refractor optics, built into the Foucault tester is a monochromatic light source set for the green line of mercury. Also, diagonal flats up to 4 inches in diameter can be tested. Refiguring mirrors may be possible; if a mirror is bad enough, it can be refigured to give the fine optical performance expected of good planetary optics.
"I will need to charge a fee for this service in order to cover the replacement insurance cost for mirrors that may be damaged during testing, although I certainly hope that this will not happen. Naturally, the member is expected to pay all shipping costs.
"If you wish more detailed information, or have comments, please write to me at the address on the inside back cover of this Journal. I may also be reached on CompuServe through E-Mail; my CompuServe address is 73747,2321 . I would like to hear from you."

## Comet Swift-Tuttle Recovered

Last seen on 1862 OCT 31, Comet 1862 III P/Swift-Tuttle has now been recovered. This confirms the 130 -year period postulated by Brian Marsden, with its 1992 DEC 12 perihelion date just 17 days later than he predicted. Searches for the return of this comet, which is associated with the Perseid meteor shower, began in 1980. The actual recovery was made on 1992 SEP 26 by the Japanese comet hunter, Tsuruhiko Kiuchi, with 6 -in, $25 \times$ binoculars. To the right are its predicted coorrdinates in the evening sky through November. The comet may be brighter than forecast, reaching naked-eye visibility in late November and December. Note that we may have a spectacular Perseid shower in 1993!

| UT Date |  | 2000.0 Coördinates |  |  |  | Pred. <br> Mag. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (0 hours) |  | Right Ascension Declination |  |  |  |  |
| 199 |  | hr | min | - |  |  |
| OCT | 15 | 14 | 10.3 | +57 |  | +8.1 |
|  | 20 | 14 | 56.0 | +54 |  |  |
|  | 25 | 15 | 40.5 | +50 |  | +7.5 |
|  | 30 | 16 | 21.4 | +45 |  |  |
| Nov | 04 | 16 | 57.7 | +39 |  | +6.8 |
|  | 09 | 17 | 29.0 | +32 |  |  |
|  | 14 | 17 | 55.6 | +25 |  | +6.6 |
|  | 19 | 18 | 18.4 | +18 |  |  |
|  | 24 | 18 | 37.5 | +12 |  | +6.6 |
|  | 29 | 18 | 54.9 | +06 |  |  |

[^2]
## Other Activities in the Solar System

Six More Amateurs to Use Space Tele-scope.-The Director of the Space Telescope Science Institute, Dr. Riccardo Giacconi, has for the second time allotted several hours of the Director's Discretionary Time to amateur observers. For "Cycle Two" there are six amateurs with five projects: (1) Are Asteroids Old Comets?, Harald Schenk and Jim Secosky; (2) The Dynamics of Binary Asteroids, Benjamin Weiss; (3) Titan's Atmosphere and Evolution, George Lewycky; (4) Morphology of GalaxyQuasar Association Displaying an Anomalous Redshift, Karl Hricko; and (5) The UV Emission Spectrum of an HII Region, Nancy Cox. The A.L.P.O. is proud to sit on the Amateur Astronomy Working Group that reviewed these proposals. Please note that three of the five topics deal with Solar-System objects.

Twenty-Fourth Annual Lunar and Planetary Science Conference. -An annual major lunar and planetary conference is held at the Lunar and Planetary Institute, NASA Johnson Space Center, Houston, Texas. The next one will be on March 15-19, 1993, with January 8, 1993, as the deadline for paper submissions. More details will be given in an Announcement to be mailed in November; to receive it and other information, write to: 24th LPSC, Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058-1113.

National Young Astronomer Award.This major new award is sponsored and organized by the Louisville Astronomical Society on behalf of the Astronomical League. It will be given to a high school-aged astronomer based on involvement in any of the following areas: research, observing, astrophotography, CCD imaging, telescope and equipment development and modification, academic perfor-
mance, public education, and junior activities. For instructions and applications materials, write to: Chuck Allen, Award Coordinator, 1007 Rollingwood Lane, Goshen, KY 40026.

Solar Astronomy Congress.-Members who attended our 1991 Convention in La Paz, Baja California Sur, Mexico, should have fond memories of that city, which will host a Solar Astronomy Congress. Held on April 5-7, 1993, it will be presented by the Centro de Investigación en Astronomía Solar (CLAS). The Congress will be bilingual; in Spanish and English. Some topics are: results of the total solar eclipse of July 11, 1991; preparations for the annular solar eclipse of May 10, 1994; techniques of solar observation, including solar eclipses and $\mathrm{H}-\alpha$ studies; the upcoming transits of Mercury and Venus, 1993-2012; developments in solar research; and mesoamerican archaeology. Papers in Spanish or English are solicited, ideally $10-30$ minutes in length. A Memoir of the Congress will be published. For more information, write: José Javier Farah de Anda, Coordinator, 2nd Solar Astronomy Congress, Centro de Investigación en Astronomía Solar, La Paz Station, Calle Purísima 119, entre Boulevard Forjadores y San José de Comondú, C.P. 23055, La Paz, Baja California Sur, México (FAX 91-682-2-72-62).

UnIVERSE '93.-Many A.L.P.O. members attended UNIVERSE '92 at Madison, Wisconsin, on June 20-25, where we were a cosponsor. The Astronomical Society of the Pa cific plans a similar meeting next year: Universe '93, at San Diego State University, San Diego, California, on the weekend of July 10-11, 1993. We will give more information in future issues; or you can write to: A.S.P., 390 Ashton Ave., San Francisco, CA 94112.

## A.L.P.O. Volunteer Tutors

Some time ago, the A.L.P.O. Membership Secretary, Harry D. Jamieson, began an informal effort to recruit advanced amateur astronomers who would be willing to assist less experienced A.L.P.O. members in mastering observing techniques. These voluntary tutors are available to correspond with members interested in their specialities; there is no better way to learn than by such one-on-one education. Below are listed the tutors who have volunteered to date, with their specialities. When you write, be sure to enclose a SASE.

Dr. Julius Benton, Jr. 305 Surrey Road
Savannah, GA 31410
Instrumentation and
Equipment Selection
Mr. Richard Hill 4632 E. 14th St. Tucson, AZ 85711-4216 Solar

Mr. Harry Jamieson P.O. Box 143, Heber Springs, AR 72543 Lunar; Instrumentation and Equipment Selection; Software-Astronomical Programming

Mr. Andrew Johnson 1 York Lane
Knaresborough
North Yorkshire HG5 0AJ
United Kingdom
Lunar; Drawing Skills
Mr. Michael Mattei
11 Coughlin Rd.
Littleton, MA 01460
Drawing Skills;
Telescope Making or Enhancement

Mr. Frank Melillo 14 Glen Hollow Dr., Apt. E-16
Holtsville, NY 17742
Solar; Photometry
Mr. José Olivarez 1469 North Valleyview Ct., Wichita, KS 67212 Instrumentation and Equipment Selection; General Literature

Mr. Peter Rasmussen 1210 W. Maple, Heber Springs, AR 72543
Instrumentation and Equipment Selection

Mr. Andrew Sorenson RR 4, Box 4A Jefferson, IA 50129
Telescope Making or Enhancement

Mr. Brad Timerson 623 Bell Rd. Newark, NY 14513 Instrumentation and Equipment Selection



## PUBLICATIONS OIF PBT ASSOCIATION OF IUNAR AND PLANTTARI OBSERWIRS

(All Section Publications must be ordered directly from the appropriate Recorders.) (Checks must be in U.S. funds, payable to an American bank with bank routing number.)
 Order from: Mark A. Davis, 130 Greenway Drive N.W., Christiansburg, VA 24073, U.S.A:
The A.L.P.O. Solar System Ephemeris: 1992. $\$ 6.00$ in the United States, Canada, and Mexico, $\$ 8.50$ elsewhere (airmail included). Over 120 pages of tables, graphs, and maps describing the positions and appearances of the Sun, Moon, each major planet, the major planetary satellites, Minor Planets, meteors, and comets. Make payment to "A.L.P.O."

## 

Order from: A.L.P.O., P.O. Box 16131, San Francisco, CA 94116, U.S.A:
An Introductory Bibliography for Solar System Observers. Free for a stamped, selfaddressed envelope. A 4-page list of books and magazines about Solar System bodies and how to observe them. The current edition was updated in June, 1991.
 Order from: A.L.P.O. Membership Secretary, P.0. Box 143, Heber Springs, AR 72543, U.S.A:
(1) A.L.P.O. Section Directory-1992/93. Free; just send a stamped, self-addressed envelope. An 8-page description of each Observing Section's personnel, projects, and publications.
(3) A.L.P.O. Membership Directory. $\$ 5.00$ in the United States, Canada, and Mexico; $\$ 6.00$ elsewhere. Continuously-updated list of members: alphabetically, by location, and by interest or interests. Make payment to "A.L.P.O."

Order from: Walter H. Haas, 2225 Thomas Drive, Las Cruces, NM 88001, U.S.A:
Back issues of The Strolling Astronomer (J.A.L.P.O.). The following are still in stock but may not long remain so. In this list, volume numbers are in italics, issue numbers are not, years are given in parentheses, and prices are $\$ 1.50$ per issue unless otherwise stated. Discounts can be arranged for purchases over \$20. Make payment to "Walter H. Haas."

```
1 (1947); 6. 8 (1954); 7-8. 11 (1957); 11-12.
21 (1968-69); 3-4 and 7-8. 23 (1971-72); 3-4, 7-8, 9-10, and 11-12.
25 (1974-76); 1-2, 3-4, 7-8, and 11-12.
26 (1976-77); 3-4, 5-6, and 11-12 [each \$1.75].
27 (1977-79); 3-4, 5-6, 7-8, 9-10, and 11-12 [each \$1.75].
28 (1979-81); 3-4 [each \$1.75]. 31 (1985-86); 5-6 and 9-10 [each \$2.50].
32 (1987-88); 5-6 and 11-12 [each \$2.50].
33 (1989); 1-3, 4-6, 7-9, and 10-12 [each \$2.50]. 34 (1990); 1, 2, and 4 [each \$2.50].
35 (1991); 1, 2, and 3 [each \$2.50]. 36 (1992); 1 and 2 [each \(\$ 2.50\) ]
```

                                    Current Issue [36, 3]- \(\$ 3.00\).
    
## KEEPING Your membership Current-

A.L.P.O. memberships include a subscription to the Strolling Astronomer (J.A.L.P.O.), the top line of your mailing label gives the volume and issue number for which your membership will expire (e.g., "36.3" means Vol. 36, No. 3). We include a First Renewal Notice in that issue, and a Final Notice in the next one.
Please also let the Membership Secretary know if your address changes.

## CONTRIBUTING TO THE STROLLING ASTRONOMER (J.A.L.P.O.)-

We welcome reports and observations from our readers and our staff. Please submit typewritten, doubled-spaced copy. For articles longer than two pages, begin with a $75-150$ word abstract (our Journal is abstracted). Cite pertinent references in full, including page numbers. Fully document observations with the name and address of the observer; the observing site if different from the observer's address; the date and time in Universal Time; the telescope type, aperture (cm. preferred), and magnification; filters used if any; atmospheric conditions (Seeing on the 0-10 A.L.P.O. scale; Transparency as the limiting stellar magnitude in the vicinity of the object); and other data as pertinent to the object observed. Illustrations are welcome but we cannot publish color. For low-contrast objects, contrasts should be exaggerated on drawings and photographs. Also, be sure to indicate celestial north or south, as well as celestial east or west if the image is laterally reversed.

With all communications with A.L.P.O. staff, please furnish a stamped, self-addressed envelope.

## ThE ASSOCLATION OF LUNAR AND Planetary ObSERVErS

Founded in 1947, the A.L.P.O. now has over 600 members. Our dues include a subscription to the quarterly Journal, The Strolling Astronomer, and are $\$ 16.00$ for one year ( $\$ 26.00$ for two years) for the United States, Canada, and Mexico; and $\$ 20.00$ for one year ( $\$ 33.00$ for two years) for other countries. One-year Sustaining Memberships are $\$ 25.00$; Sponsorships are $\$ 50.00$. Associate Memberships, which do not include a Journal subscription, are $\$ 3.00$ per year.

There is a 20 -percent surcharge on all memberships obtained through subscription agencies or which require an invoice.

Our advertising rates are $\$ 85.00$ for a fullpage display Ad., $\$ 50.00$ per half-page, and $\$ 35.00$ per quarter-page. Classified Ads. are $\$ 10.00$ per column-inch. There is a 10 -percent discount for a 3-time insertion on all advertising.

All payments should be in U.S. funds, drawn on a U.S. bank with a bank routing number, and payable to "A.L.P.O." When writing our staff, please furnish stamped, self-addressed envelopes.

## Association BOARD OF DIRECTORS

Phillip W. Budine Walter H. Haas
Harry D. Jamieson (Treasurer) José Olivarez Donald C. Parker Elizabeth W. Westfall (Secretary)
John E. Westfall
(Chair)

| Assoclation Staff | Francis G. Graham (Assistantit Recorder -Eclipses) P.O. Box 209 |
| :---: | :---: |
| Executive Director/Editor John E. Westfall | East Pitusburgh, Pennsylvania 15112 |
| P.0. Box 16131 |  |
| San Francisco, Califomia 94116 | -Lunar Section- |
| $\stackrel{94116}{ }$ | ohn E. Westfa |
| FAX 4IS-731-8242) | (Recorder) <br> (Address under Execulive |
| nder/Director Emeritus | Director/Editar) |
| Walter H. Haas | S. Cameron |
| 5 Thomas Drive | (Recorder, Lunar Tr |
| Las Cruces, New Mexico | Phenomena) |
| 88001 | La Ranchila de la Luna 200 Rojo Drive |
| Membership Secretary | Sedona, Arizona 86336 |
| Hary D. Jamieson P. D. Box 143 | Julius L, Benton, Jr. |
| Heber Springs, Arkansas 72543 | Program) <br> (Address under Venus Section.) |
| Book Review Editor José Olivarez | Francis G. Graham (Recorder, Eclipses and |
| 1469 Valleyview Court | Photometry) |
| Wichita, Kansas 67212 | (Address under Solar Section) |
|  | Нагт D. Jamieson |
| Training Program | Lunar Dome |
| José Olivarez | (Address und |
| (Address immediaely above) | Membership Secreary) |
| International Solar System | -Mercury Secti |
| Observers' Fund | Richard M. Ba |
| ul H. Bock, Jr |  |
| RR1, Box 347 | 5 Whitchurch R |
| Hamilton, Virginia 22068 | Chester CH3 5QA, England |

-Solar Section-
Paul Maxson
(Acting Recorder)
8839 N. 30h Avenue
Phoenix, Arizona 85051
Richard Hill
(Assistant Recorder)
4632 E. 144 Street
Tucson, Arizona 85711
Randy Tatum
(Assistant Recorder) 1108 Ocala Road
Richmond, Virginia 23229
rancis G. Graham P.O. Box 209 East Piusburgh, Pamsluaia 1512
-Lunar Section-
(Address correspondence io Daniel M. Troiani, below)
Dariel M. Troiani
(Assistant Recorder) 629 Verona CL
Schaumberg, Illinois 60193
Harry Cralle
(Assistant Recorder)
3902 E 29h Siree ( $\mathrm{J}-4$ )
Bryan, Texas 77802
-Minor Planets Section-
Frederick Pilcher (Recorder)
Ilinois College
Jacksonville, [linois 62650
-Jupiter Section-
Phillip W. Budine (Recorder)
R.D. 3, Box 145 C

Walton, New York 13856
José Olivarez (Recorder)
(Address unda Book Review Edilor)

John E. Westall (Assistant Recorder, Galilean Satellies)
(Address under Exeative Director(Ediox)
-Saturn Section-
Julius L. Benton, Jr. (Recorder)
(Address under Venus Section)
-Remote Planets Section
Richard W. Schmude, Jr. (Recorder)
802-9h Streen, Apl 21
Los Alamos, New Mexico 87544
-Comets Section-
Don E. Machholz (Recorder)
P.O. Box 1716

Colfax, Califomia 95713
James V. Scotii
(Assistant Recorder)
Lunar and Planetary Laboratory
University of Arizona
Tucson, Arizona 85721
-Meteors Section-
Robert D. Lunsford (Recorder)
161 Vance Strea
Chula Vista, Califomia 91910
James V. Scotti
(Assistant Recorder)
(Address unda Comes Seation.)
-Instrument Section -
(provisional)
Michael Mattei
(Acting Recorder)
11 Coughlin
Liuleton, Massachusetus 01460

# Natural Resources from Sky 

The New Solar System 3rd Edition



Edited by J. Kelly Beatty and Andrew Chaikin
The solar system we know today is more intricate, active, and beautiful than that described in textbooks not long ago. In this acclaimed text, 26 eminent authors summarize in words and hundreds of photographs the current knowledge about the Sun; the planets and their moons; comets; asteroids; and meteorites. Foreword by Carl Sagan. Copublished with Cambridge University Press. 326 pages, $81 / 4$ by 11 inches.

46557 NEW SOLAR SYSTEM (Hardbound) . . . \$39.95
46565 NEW SOLAR SYSTEM (Paperbound) . . . \$24.95

## Lunar Sourcebook: A User's Guide to the Moon


by Grant Heiken, David Vaniman, and Bevan French
Lunar-science aficionados will treasure this timely, all-in-one reference that chronicles almost everything known about the Moon. Included are summaries of the Moon's geology, mineralogy, radiation environment, and thin atmosphere, as well as findings of U. S. and Soviet lunar missions, the analysis of soil samples, and much more. Complementing the text are approximately 500 illustrations and more than 100 tables of data. 736 pages, 7 by 10 inches, hardbound.
$\mathbf{3 4 4 4 6}$ LUNAR SOURCEBOOK . . . \$59.50

## The Essential Magazine of Astronomy

Each monthly issite of Sty \& Telescope brings you the latest astronomy news, fascinating feature articles. spectaculat astropholographs, pliis advice, chattifand tables for observing celestial object: and events.

One-Year Subscription Rates:

| U. S. \& possessions | \$27 |
| :---: | :---: |
| Canada (includes CST) | \$36.38 |
| Great Britain, Europe, Alirica di West Asia | \$42 |
| all other intemational | S34 |



Serving the astronomical community since 1941 .
All payments must be made in U. S. funds drawn on a U. S. bank, by International Money Order, or by VISA or MasterCard. Prices subject to change without notice. Ask for our free catalogue.


[^0]:    * A set of 20 "Jupiter Recording Forms" containing 40 discs (two per form) is available from Jupiter Recorder José Olivarez (address on inside back cover) for $\$ 5.00$ postpaid.

[^1]:    *Key to Abbreviatlons: $\mathbf{A B O}=$ Alpha Bootid, $\mathbf{A S C}=$ Alpha Scorpiid, $\mathbf{C A M}=$ Camelopardalid, $\mathbf{C E T}=$ Tau Cetid, CRV = Corvid, CSC = Chi Scorpiid, DDR = Delta Draconid, ETA = Eta Aquarid, FBO = Phi Bootid, GCA = Gamma Capricornid, GEM = Geminid, GSA = Gamma Sagittarid, HYD = Sigma Hydrid, ISC = lota Scorpid, JBO = June Bootid, JLY = June Lyrid, KSE = Kappa Serpentid, LSA = Lambda Sagittarid, LYR $=$ Lyrid, MVI $=\mathrm{Mu}$ Virginid, $N O P=N$. Ophiuchid, $O P H=$ Ophiuchid, $O R S=S$. Chi Orionid, OSC $=$ Omega Scorpiid, PER = Perseid, PPU = Pi Puppid, RSA = Rho Sagittarid, SAG = Sagittarid, SCU = June Scutid, SLE $=$ Sigma Leonid, $\mathbf{S O P}=\mathrm{S}$. Ophiuchid, $\mathbf{S P O}=$ Sporadic, $T H E=$ Tau Herculid, TOP $=$ Theta Ophiuchid, VIR = Virginid.

[^2]:    (Based on Information provided by Donald Machholz, A.L.P.O. Comets Recorder)

