

Mailing Address
The Strolling Astronomer
Institute of Meteoritics University of New Mexico Albuquerque, New Mexico

INTRODUCTION

Though all of us would have liked to attend the dedication of the Palomar Mountain 200-inch reflector in June, very few of us did so. Though all of us may wonder what planets look like in the 200-inch reflector, very few of us will ever see them thas. However, Mr. Thomas Cragg, $1908{ }^{5}$. Burlington Ave., Los Angeles 7, California, has had both experiences. He has described them in the following article which we are very happy to publish.

Mr. Cragg is one of our most active observers. We have frequently described his observations of Venus, Mars, Jupiter, and Saturn in recent issues. He employs both his own 6-inch reflector and the evidently excellent Zeiss l2-inch refractor at the Griffith Planetarium. Our contributor is one of the sparkplugs of the Los Angeles Astronomical Society. His chief interest is variable stars.

Mr. Cragg's subject is the appearance of divisions in Saturn's rings. Readers might like to review "Detail in the Rings of Saturn" on po. 4-5 of our May, 1948, issue. There can be little doubt that a large. aperture gives a great advantage in telling the real nature of such features, and the editor would opine that Mr. Crage's view of the various divisions, with the 200 -inch is as decisive as a single observation can possibly be. The Third Division mentioned below lies near the inner edge of Ring B; the Fourth Division, well outside its middle.

$$
\frac{\text { SATURN WITH THE 200-INCH }}{\text { by Thomas Crage }}
$$

As we know, the giant 200 inch telescope wes dedicated as the Hele Telescope in honor of Dr. George Ellery Hale. This dedication took jlace on June 3,01943 in a. very fine ceremony lasting about two hours. Several speeches were given by' various nembers of contributing organizations and were all very good. However, most of the readers of our paper are, I believe, more interested in what we did that evening.

It all started when a rumor began flowing around that there was to be a "rress Conference" later on that evening after most of the people had left. It was understood that they were to get a look through the telescope to report to the public of the nation just what an object looked like through the 200-inch. Before it had become completely dark, the dome wes closed; and a 45 -minute movie taken by Fdison Hoge of Mt. Wilson was given. This was one of the best movies on the construction of the instmment that. I have had the oleasure of attending. Unon the conclusion of the movie, the telescope was set up for observation. It took some time for the mirrors to be lined up and the instrument set up on Saturn, which was to be the first object viewed thet evening. I don't sumose there vere more then 40 or 50 people at the most in the dome during the time of observation. Of course, with my luck, the seeing was certainly nothing to rave about. I would estimate the seeing at about 2^{*}; Dr. Bowen, who was stending near the eyepiece during the course of observation, claimed that the seeing was about l. When I placed my eye at the coude focus of the telescope, the first thing that impressed me was that the object was so brilliant that finer details were obscured on the ball itself. Especially true when working with olenetary detail is the in teresting effect that occaisionally, when looking with bad seeing, the seeing will steady dow for a moment and permit details to be observed quite well. Such was the case now. The first thing I thought of was to find out what the rings were like, as I knew that with smaller telescopes the seeing would heve to be excellent in order to see anything at all. When the sudden steady moment did occur, the following could be said to have come out: 1) Bncke's Division was resolved as a band of definite width but was distinctly a band and not a complete space gap void;
a) Cassini's Division was the space division it is usually contendec to be and was easily visible around the entire visible part of the ring; 3) the Third Iivision came out, very thin, but to me it appeared definitely to be a black line or a space gap rather than a bend as has been described by most of the A.I.P.O.; 4) the Fourth Division was also seen and was just a mere triffle thinner than the Third Eivision, but was also a space gap rather than a darkening. During one coservation with a twelve-inch Zeiss refractor, Mr. Tome Cave of Long Beach, Calif, and I were under the impression that the Third Division was really two very narrow thin streaks, but this observation with the 200 -inch seems to confirm what was originally thought by members of the A.L.P.O. (a single division) ; 5) The Crape Ring was definitely visible around the entire visible nart of the ring, but the division which has been observed in this ring was not found by me with the $200-$ inch that evening; 6) the space gap between the Crape Ring and Ring E was also not visible during this observation. The alarming thing that struck the author besides the eatreme brilliancy of the ball were three satellites which were in the field of view at the time. They were of ebout loth magnitude, and through the big telescope they looked about like third magnitude stars in a six-inch telescope. By this time it was the next person's turn in line so I had to leave the eyepiece. I was trying to wait for another good spot in the seeing, but no more came along. This observation, I believe, should certainly give considerable light on the disputed existence of the two divisions many of the i.L.P. 0 have observed. During the courso of the observation a seven-inch focus negative telescope was used for an eyepiece so I understand) giving a power of around 700x. * On a scale of 0 to 10 , with 10 best.

VYINUS PASSES THE SUN by Walter H. Haas

It is well known thet the homs of the planet Venus extend considerably beyond a semicircle near inferior conjunction, partly merely because the sun is]arger than the planet but chiefly because the sunlight is diffusely reflected in the atmosphere of the planet. The appearance is often ascribed to refraction; however, H. F. Fussell has shown in AD.J. Volume 9, Dg. 284, 1899, that it must be imputed to reflection, though refraction can explain the luminous ring around lenus during its rare solar transits. The purpose of this article is to summarize some observations made near the inferior conjunction on June 24, 1948. We limit attention to ones made when the phase-anglei was at least 160°. This is the angle ot the center ofVenus between lines drawn to the centers of the earth and of the sun. The particioating observers are: W. H. Haas with a. 6-inch reflector in albuquerque, New Mexico; D. O'Toole with a 3.5-inch reflector in Vallejo, Califormi: Z.J. Reese with a 6-inch reflector in Union town, Penna.; C.B. Steohenson with the Univarsity of Chiceao 6-inch refractor; and E.K. White with a $\mathrm{T}^{\text {-inch }}$ reflector in Kimberley, i.C., Canade. Fowers employed ranged from 50X to 200X; low ones were nost effective on the brilliant sky near the sun. We list below observed angular serimeters p of the bricht limb.

	Date(U.T.)	Observer	1	p
1	1948 June 15.1	Heas	159.7	$220{ }^{\circ}$
2	June 16.1	Haas	161.7	235
3	June 16.9	Stephenson	163.4	190
4	June 18.1	Haes	165.9	230
5	June 19.1	Haes	167.9	240
6	June 20.7	White	171.2	236
7	June 21.0	OToole	171.8	200
8	June 21.8	O'Toole	173.4	200
9	June 24.6	Reese	176.6	360

No.	Date (U.T.)	Observer	i	p
10	Tune 26.0	White	$175 \% 2$	180°
11	June 26.9	White	173.4	360
12	June 27.7	White	171.3	230
13	June 27.7	Reese	171.3	213
14	June 30.7	Stephenson	165.7	360
15	July 1.9	White	163.2	200

Some comments on those observations may be worthwhile. Hass found the ends of the horns so thin and dim that it was difficult to estimate the perimeter. He thinks that his values must be regarded as minimum ones and that a larger telescope or a darier sky would have supplied greater perimeters. The same joint is stresseã in the fact that o'Toole's 3.5-inch gave smaller perimetcrs than the larger aper tures. Reese's observation on June 24 was at the very bour of ccnjunsition with the sun. He clearly saw the planet as a complete ring of light, but the south haif of the rine wes indced faint. The "conspicuous" portion of the ring had a perimeter of 212^{6} and remeined easily visible when thin cirrus clouds passed in Sront of Tenus. The hrightness of the ring did not diminish uniformly from its thickest part, to the oposite point; instead, some alternate brighter and dimeen aros presumably indicated inequalities in the Venusian atmosphere. White's first obseivedion of June 26 was in a siightly hany sky, which doubtless explains his negative rerult. In his second view on June 26 he saw the complete ring during the best moments. Stephenson's seeing Venus as a complete ring on June 30 is very interesting because this feat is usually thought impossible with i only 166°. It hence appears well to give some details. He writes that he was barely able to make out the complete ring of light out that there is no doubt in his own mind of its reality. There were many fairweather cumulus clouds, which obligingly covered the sun without obscuring the lanet from time to tine. The sky between the clouds was ver:i clear, remerteably so for Chicago. Stephanson thought that the faintest oortionof wee ring was perhaps not exactly opposite the sun. Reese on June 24 sew three dimmest arcs, none centered exactly opocsite the sun. Later on June $30 \mathrm{H} . \mathrm{M}$. Johnson joined Stephenson at the Observatory. The sky, alas, was now almost clear of cloues and less transyarent than earlier, and neither of them could even suspect the rirg.

Let us inquire about the height h of the diffuselar ralecting layer of Tenusian atmosphers. Let $l=\frac{1}{2}\left(p-180^{\circ}\right)$, where p is the perineter. When i is 90°, \therefore is easy to show thet $h=R(\sec \cdot \cdots \hat{Q}-1)$, where R is the radius of Venus or 3850 miles and γ is the atmosphere-caused component of 1 . More generaily, it can be shown from soherical trigonometry that at any ohase one hes aporoximately: $\sin \left(0+0^{\circ} 22^{\prime}\right)=\sin$ i $\sin 1$. Fere $Q^{\circ} .22^{\prime}$ is the angular radius of the sun as sem from Vemus. If ϕ is fixed, it is evident thet 1 will increase as increases froul dichotomy to inferior conjunction end that 1 will reach 90°, making ρ equel to $36 j^{\circ}$, when i is close enought: to 180°. The observations listed above may be then reducet as follows:

No.	02	No.	\mathscr{O}
\cdots	$6: 4$	8	0.7
2	7.9	9	3.0 or more
3	1.0	11	6.2 or more
4	5.5	12	3.0
5	5.6	13	2.0
6	3.7	14	13.9 or more
7	1.0	15	2.5

The average of the 14 determinations is 495 or more. If one omits runter 14, the average is $3: 7$ (or more). Sat in view of the huge variations in and sore (f the remarks given above, it appears like.ly that the smollor values ce 0 reproant only the brightest part of the extmensions. I shovid opine that the actua!
 urifortunately sensitive to small changes in because of the socant function in the formula. One has these corresponding values.
$\frac{0}{40}$

$$
\begin{aligned}
& \underline{h} \\
& 9.2 \text { miles } \\
& 14.6 \\
& 21.2 \\
& 28.9 \\
& 37.7
\end{aligned}
$$

Some of the observers reported the derk henispherc of Venue to to daries

 wrerz with him: aiso found the derk part of "enus sigitioy iowrer trad tre ey.
 than the sly, bito on this date they aiso sometimes zair a diffencoc ir the donsie sense; and Stemenson, roporing for hem, stresses the psychonozival exters jan olved in tho observetion White and Heas remaried no acfinite difierence zetwen whe inuerior of the cresocnt and the sloy.

How this curious darmess of the interior of Venus had been reported by Fume other observers nes past inferior conjunctions. It has been sugesstod that The apearance is causad by a faint extension of the solar corona, dinmee win inceeasing distance from the sun. Since Venus occults suck coronal ligit. it would ohen be dimmer than the sky. Sterhenson and dohnson heve sought to check this arteroratation by comparing the dark hemishere of the nearis new noon to the bjacent sky during daylight or bricht twilight. The two regions have ajneared to be much the semeintonsity undor thosu conditions, nerhaps becmuse tho coronal :Ilumination of the sky is belanced of the earthshine on the moon, rerraps orly becajue of obvious observational difficultiez. Again, the moon cen soaveey bs onserved as close to the sun as Venus. utben in yea, inforior conjursuion, end

It is tempting to worder whether stomherer hago yeve or e or Jue
 as posible. Joservations 12,13 end 15 quite deti to ertero sach arman elove.

 i: the anartor s ariviege - and duty - to ronitio.

 \therefore abte ring of aght with i near 20%, ad the ouror shom toth houns rolonge

 bong near the scuth cusp wes reddisi in color, No nearable diforende in bright-
 demeter of Venus on tha photperaphs gave 7610 miles in red light. 7623 in freen, ric. 7537 in blue. The difference might indicate an atmonvere 27 miles deep, but \therefore he jowell observers thought it more likely that accidental errors in the reasurrents are involved.

OR PESNOS MTD HM

Important Note. $\dot{n} l l$ dates and times in this parnhlet are given by Univers Time unless the contrary is explicityly stated. Universal Time is the local mean solar time at Greenwich. The U.T. date will frequently differ from the date by civil time such as Z.S.T., P.D.S.T., etc.

We do not often get observational reports on Mercury. Ne were lence giac. to receive a précis of observations by $C . B$. Stephenson with a 6 -inch refractor on hay 18, May 20, June 1, June 4, and June 8 and a draving by T. Grage with a six-inch reflector on May 18. Stephenson writes that at i8 300 on May is (at 12:30 P.M. byy C.S.T. at Chicago) he found the terminator of Mercrey to be either earaty straight or else very slightly concave. The best views geve an "exquisitely sharp" disc and showed concavity. W. Lorenz, observing with Stephenson, "pronounced the disc definitely not gibbous, the terminator appearing perfectly straight to him," The interesting thing about this observation is that it was made when the phase angle i was only 76°; theoretical dichotomy dia not arrive until i weachea 90° on Nay 23. Other observers frequently have recorded such differences between thecretival and observed dichotomy for Mercury, though usualiy smaller in amount tran wirc. Similar differences for Venus are imputed to its elmosphere, ard one thus aprcer' justified in supposing a Nercurian envelope involved fow that planet, ilterns.tel. it has been pointed out that the terminator of Merciay is less bijghtiy Int than the rest of the disc and might hence be invisible, causing the oberved phese to be too small. Although familiar with this explanation. Stejehnson tninks it unlikely because of the sharpness of the disc during the best moronts, At any rate, it is easy to verify that poor telescopes, bad seeing, and generally piadequate views make the phase seem too large, not too small. When i was 80° on May 20 , Stephenson agein remarked slisht comoavity. Crage drew a convex terminator at $3^{h_{\perp}} 5^{m}$ on May 18 , with seeing bad.

Stephenson's drawings show several dark ereas near the terminator: and these appear to coincide with the areas named Atlantis, Criophori, and iphrodites hy Antoniadi. His map of Mercury is repooduced on pg. 193 of F.I. Whippeis iarth, Mon, end Flenets. Stephenson's drawings show itlantis, the southernmosi of the three shadings, present on June J, but absent on June 4 and 8 , unless drawn joined. to Criohori on the later dates. Sketches of Mercury by H.F. Heas with a 6-inch reilector eppear to show Atlantis on May 23 but not on June 6 or 8. Haas also drew, on most of the dates thet he observed in May and June, bright cusp-cads and bordering dax cusp-bands.

Stephenson remarks that with a 6-inch refractor in Chicago he got his best views of Mercury just after sunset and before the planet was visiblo to the neked eye. This experience accords with that of many others who have studied the Ilusive Flanet with small apertures. Setting circles are a great aid in locatine the plenet, of course, though an ingenious amateur will be able to pick it up without: them.

Observations of Venus near the June 24 inferior conjundtion are described elsewhere in this issue. We have received a set of drawings medein May and runc I. T. Johnson with an B-inch riflentor and ang that set hy T. Crake with an 6.nup ro-
 are not shown centered upor the cusps. Fe also depicted rather ndefinite shede? areas near the terminator. On May 9 the terminator looked rageed to hir, ena on May 24 he sew "some curves in it"; these may correspond to the terminator-irseg.larities observed by Pfonnenschmidt, Eartlett, and Slemaker in Nay (see fily issue).

On June 10 and 11 Cragg found the horns to extend through affini cely morz than a semicircle. That is not in itself remarkable with phase-angles $5 \pm 750^{\circ}$ ca June 10 and 152° on June 11 ; indeed, Haas estimated the ancuiar perimeter to re 195° elready on June 8. The interesting thing rather is that Craeg otiserved two bulges on the very thin horns beyond. (i.e., on the dark iim siae of) the theoretical cusps. He sugests that those are cloud-masses noar the Venusian poles. There is certainly a remarkable resemblande to the cloud-mads photogranted on the twilight arc near the south cusp by the Lowell Observetory on Iovember ? 1938 (The Stey, Volume 3, No. 5, pe. 3 , 2939 .)

CraÉg has several times dratin alarge white protrusion from the norit
cusp-cep. If the cusps are at the poles, perhaps one hes here the:equator-wardte. flow of polar cloud-masses. The bulges near the cusps on June 10 and 11 mentioned above perhaps favor the idee that the bright cusp-caps drewn by so meny observers are polar clouds higher than the eneral reflecting surface of Venus. Crage has, moreover, several times remarked one or more small detabhed bright ppote near the south cusp-cap, curiously like the "Fountains of Mitchell" on Nars. On Nay 25 a very brilijant spot neer the south cusp appeared to project beyond the limb of the planet, presumably mostly or wholly because of irradiation. CraEf has not found it possible to obtain any clear ideas about the Venusian rotation from an examination of his drawings - in which respect ho has many eminent predecessors!

The "ashy light", that curious and controversial illumination of the dark hemisphere of Venus, is still with us planeterians. On April 17 and 23 J.C. Bertlett with a 3.5 inch reflector observed this dark hemisphere, which exhibited a purplish gray color. He saw it for the third time on Nay 9 ; but it was now chang e 0 considerably in color and appearance, beingllsomething darker thon the sky between the horns of the crescent, " to borrow Mr. Heath's expression. Mr. Bartlett writes that the "ashy light" was invisible on other dates that he stucied Venus, or at least much fainter than on the three dates mentioned. After years of seeing the dark hemisphere to be exactly like the sky, W.H. Haas on June 6 with a 6 -inch reflector perceived the "ashy light" for the first time, very faint and oossibly red-brown in color. It much reminded him of the lunar earthshine (a comparison often made), even to the extent that the dark limb looked brighter then the interior portions of the dark hemisphere. Haas reneated this observetion on June 8, though the "ashy light" had perhaps grown dimmer. He failed to see it on June 15 or 16 , suspected it strongly on June 18, and found it faintly present on June 19. When visible to him, it looked brownish.

Venus will be extremely well placed in the morning sky during the next several months. We urge our readers to watch it under these favorable conditions. One cannot complain of a lack of Venusian puzzles!

Just about averyone has stopped looking at Mars. On June 13, at * 0.111°, J.K. White in his 7 -inch reflector found the north cen still conspicuous, much more so than the south cap. On July 12 at 0125° and on July 17 at 0128° Haas found the south cap larger and brighter than the north cep. The latter, in fact, looked inconspicuous and no longer brilliant, though certein judging was difficult with Mars so remote. Is the melted remnant of the surface snow now covered by atmospheric mists?
7. Pfannenschmidt has kindly communicated a set of 10 Mars drawings by Reyer and. Winterberg with the Stuttgart, Germany, Pierz 8-inch refractor between April 19 and May 25, inclusive. These drawings show the north cap apparently about constant in size while 0 ranged from 87° to 103° so that melting mey have ended by April 19. The south, cap was usuallyn ot observed. However, on fipril 27, at C.M. 239° there was a very bright area near the south pole. It was probably robserved on April 28 at C.M. 244° as a south polar bright area without definite borders. Of the Aoril 27 view Keyer said".......the northern part of the disc was very hazy and of a clear reddish hue. Fivery detail seemed to lie under a half-transporatt mist." The "Libya gap" in Syrtis Major was beautifully seen on April 20. On ADril 28 several canels were resolved into chains of dots. On April 26 both Nieyer and Winterberg drew Mars near C.M. 264°. Though they agree remarkably well, neither of them shows Syrtis Major with at all its usual size and prominence. That obscur ing Martian atmosphere again?

Saturn will be unobservable in august; but we hope that our members will study it as soon as possible after conjunction, being expecially attentive to the intensity of Ring B and to the exact appearance of Ring C both on end off the bol. In his last view of the 1947-48 apparition on July 12 , necessarily a poor one, Ea found Ring \bar{B} still dimmer than the Bquatorial Zone and the C projection at the $C . .$. about as wide as Cassini's at the ansae. ㅍ. E. Hare writes that in late May and u_{i} to June 21 the narrow outer jart of Ring E grew somewhat brighter, Fing 0 simul-
taneously boome atm as in Oetober, 1947, he says. 卫. J. Roese has reported a third observation of the shadow of Ring B within the Ring C orojection. On Hayll he saw this projection to be black in its northen two-thirds, lighter in its southem third. The Jquatorial Bend was then alearly visible slightly south of the middle of theEquetorial Zone. We have recently received welcome drawings of Saturn from L.T. Johnson and T. Cragg. Johsson speaks of the Craje Ring projection as "very narrow" on November 29, 1947, just as others in A.L.P.O. were then seeing it. He shares also the opinion that this projection was extremely dark on (and near) May 9, 1948; in fact, he thought it to be a shadow, On May 11 he made the Equatorial Zone the brightest part of the ball and rings fand thus brighter than Ring B - a third welcome bit of confirmatory evidence in his report. Crage's drawings on May 18 and 25 show the south poler white snot very small, much smaller than he drew it in ipril. Fie finds two belts north of tho rings and e very thin and sinuous Fquatorial Band. On each date Crage drew a. white area on the preceding limb (left in simply inverted $\nabla i e w$) in high southen l titudes. It epperers to be like the Saturnian limb areas observed by feese and Haas 1.22947 . 48 end thought to be longitudinally extended clouds above the visible surfare of Te trine. Crage found no hint of any projecting of this area at the limb. We soly in ju jast couple issues about a lighening of the South Polar Belt durin way lie heae add thet Crase drew this belt on May 18 but showed no sign of it on Moy 25 an aiew obviously not poorer than usual.

Recent observers of Jupiter include (ivise) a. ${ }^{\top}$. Elour, T. Cregs, T.R. Cave,
 Stuttgart), L.T. Johnson, J.R. Smith, and W. H. Fias. The plaret will continue to be well placed, though low in the south. during sugust.

The Red Spot Hollow continues to be seen as a whito oval brighter then adjacent portions of the South Tropical Zone and outlined at each end by a dark band across the zone. It shows:-1ts usual deflecting effect upon the south part of the South Bquetorial Belt. The Red Syot itself remains quite invisible. However, Cave in a splendid view on June 15 saw some faint dark markings inside the Hollow. Hare on June 23 found the thin and faintbelt within the South Trofical Zone to cross the Follow without a change in direction, and a poorer: view by Has on July 10 shows much the seme appearance. There is some evidence that the Hollow has become dimmer then it was some months ago. Though Feese had found it unusuelly brjght on Goril 26 (as Haes did on April 27), it looked much duller to him during June. On July 5 Missert thought the Hollow about the same brightness"as the South Tropical Zone. Heas thought the Hollow rather inconspicuous on Junc 17, 18, and 22; on July 10 he found it scarcely brighter then the zone, and on July li it looked dimer than in May. Transi6s by Reese gave these longitudes (II) for the Follow from : 20 to Jure 28: preceding end at 220° (9 transits), center at 232° (8 transits), following end at 24° (9 transits). Hans got these values from July 10 to July 17: preceding end at 218° (2 transits), center at $231^{\circ}(4$ transits), following ena et 242° (4 transits). Missert on July 5 put the center at 237° and the following end at 243°, but he opines that these values may not be too reliable. Thite placed the following end at 243° on June 30 . J. . . Smith put the center at 234° on July 9 and 14. It now appears rather clear thet the Follow is moving slowly in increasing longitude (II).

The general appearance of the belts and zones is still the same as desciibia on DS. 4 of the July issue. The south Equatorial Belt is still weekest near the Holl low and is very prominent in the oposite longitudes. The south component of the South Jquatorial Belt North (of the whole South Squetorial Belt?) has often beon much stronger then the north comonent. In mid-July Haas found the South Tropical Zone rather dull near the Hollow and distiactly brighter in other longitudes is lovely drawing by Reese on June 18 at C.M. (II) 213° shows a thin belt in the North Tropical Zone, just as Hare observed on May 23. L. T. Johnson on June IL wre a short rather dark section of the Bquatoriel Band a little short of central $2 \pm$ © (I) 325°, and Haas on June 13 placed the following end of this darker section at (I). Unfortunately, these isolated statements can convey little idea of the com? x and ever-chenging pattern of the Jovion belts and zones.

Reese has called to our attention what may well have been a truly remarlable and significant drift. On June 24 a narrow black streak on the south edge of the North Equatorial Belt extended from longitude (I) 98° to 126°. On June 29 the seme streak, at least to all appearances, reached from 113° to 142°. Reese at once observ. ed thet the streak was thus appreaching a large dere prgjection on the south edge of the belt, observed to lie at 154° on June 24 and 152° on June 29. Cloudy skies now promptly descended on our observer, but in poor seeing on July 1 he thought both. streak and projection less conspicuous than on June 29. Transits on July 1 placed the preceding end of the steak at $118^{\circ}(I)$; the following end wes not distinguished from the projection, now at 150°. We thus find that the preceding end, and perheps both ends, moved 20 degrees in increasing longitude (I) in only seven deys Hence, if we have not blodered in identificetion, the streak had the abnormal rota-tion-jperiod of $9^{h} 52^{m}$ 4 4 he editor conjectures - or rather Euesses - thet such periods differing greatly from those usually assigned for the verious latitudinel currents may not be too rare, especially if such crassly individuelistic marks do not endure beyond the quickly inevitable collisions with their normally-moving fellows. A short-lived mark will simply not be observed often enough to allow its period to be deternined.

Usually the extreme limb of Jupiter looks dim and featureless, and it is hence noteworthy that Crage has not only seen some bright spots on the limb but has peven had impressions of projections there. The first examplo of seeming projecting was a spot on the following (right) limb in the South Trojical Zone on June 15 at C.M. (II) 245°. The second one lay in the South Temperate Zone on the following limb at C.M. (II) 210° on June 20. Crage opines that the projecting effect was mostly due to irradiation. The editor rather doubts that any of it can be actual. The poler radius of Jupiter was $22^{\prime \prime}$ in June, and it follows thet a cloud projecting only 0.1 must rise nearly 400 milas above the reflecting surface of the planet. Sut since the surface gravity on Jupiter is 2.6 times thet on the earth, the density gradient in the former's atmosphere must to steep; and it apoers difficult to suppose that Jovien clouds can attain heights so very for above what terrestrial onos reach.

It may be worth mentioning that Hars observed a brighter area, near the preceding (left) limb in the Touatoriel Zone on July 10 a.t C.M. (I) 140° to 146° (watched for ten minutes). He was much reminded of Martian and Saturnian limb spots. This Jovian feature was about $2^{\prime \prime}$ or $3^{\prime \prime}$ long north-south and was much less wide then long, perhaps beceuse foreshortened.

Messrs. Crage and Cave had a festive time drawing detail on the Galilean satellites on June 13 with thoGriffith 12 -inch refractor at 833 X . Both observers sew white caps near the top and bottom of each of the four discs; there was thus a strong rasemblance to the polar caps of Mars when that planet is viewed with inadequate power. Ganymede supplied more detail then the others. The satellites showed varying amounts of ellipticity, possibly a result of imperfoctly seen dorcer areas on them. But the surprising point in the obser vations is the apmerance of Callisto to Cave; we quote:"....the thing that first struck me was a vory fuzzy appearonce around the disc, almost like the coma obout a comet." At almost the same time that Mr. Cave's observation arrived, we received an article from J.C. Earłlett on Jovian satellitc apoearances, which we plan to publish in our next issue In it Dr. Sartlett says of Callisto:"The writer has also seen the disc nebulous and indistinct and at other times very sharply defined." The coincidence is a bit surprising.

We hope that all this discussion will indicate that good plenetary work is being done by amateurs with ordinary-sized telescopes. Why not share in it?

SUBSCRIPTION RATES

12 issues	$\$ 2.00$
6 issues (in print)	1.00
1 issue	.20
STAFF	

Iditor Walter Haes, Instructor in Methemetics, Astronomer, Institute of Meteoritics, University of New Mexico, Albuquerque, N.M.

