

C/2021 A4 (NEOWISE) shares the stage with galaxy NGC 2403 in Camelopardalis. Martin Mobberley took this $120-\mathrm{sec}$ luminance image on 2021 February 10 with a $0.43-\mathrm{m}$ reflector and FLI PL6303E camera.

The monthly ALPO Comet News PDF can be found on the ALPO Comets Section website (http://www.alpo-astronomy.org/cometblog/). A shorter version of this report is posted on a dedicated Cloudy Nights forum (https://www.cloudynights.com/topic/759374-alpo-comet-news-for-march-2021/). All are encouraged to join the discussion over at Cloudy Nights. The ALPO Comet Section welcomes all comet related articles, observations, images, drawings, magnitude estimates, or spectra. One does not have to be a member of ALPO to submit material, though membership is encouraged. To learn more about the ALPO, please visit us @ http://www.alpo-astronomy.org.

In This Issue

Summary 3
Bright Comets (magnitude < 10.0) 3
C/2020 R4 (ATLAS) 3
Fainter Comets of Interest (generally fainter than magnitude 10.0) 3
10P/Tempel 3
29P/Schwassmann-Wachmann 5
C/2019 N1 (ATLAS) 5
C/2020 T2 (Palomar) 6
C/2020 A1 (Leonard) 7
C/2020 A2 (NEOWISE) 8
C/2021 D1 (SWAN) 11
New Discoveries, Recoveries and Other Comets in the News 12
Recent Magnitude Measurements Contributed to the ALPO Comet Section 14
Recent Select Images Contributed to the ALPO Comet Section 15

Summary

Not sure if we'll have any comets brighter than $10^{\text {th }}$ magnitude this month though there are two contenders. C/2020 R4 (ATLAS) may break the magnitude 10 barrier at the end of March but this is uncertain as the comet has not been observed since early January (due to being too close to the Sun). Newly discovered C/2021 D1 (SWAN) is close to the magnitude 10 barrier but it appears likely that it is currently as bright as it will get at $10-11^{\text {th }}$ magnitude. In the meantime, there are many other comets between magnitude 10 and 13 that are good targets for CCD imagers and large aperture visual observers. Though still around $18^{\text {th }}$ magnitude, imagers are encouraged to monitor C/2020 A1 (Leonard) which may become a nice object in December.

Bright Comets (magnitude < 10.0)

C/2020 R4 (ATLAS) - Placing C/2020 R4 (ATLAS) in the brighter than $10^{\text {th }}$ magnitude category may be a stretch for March. When we last saw the comet it was a $11-13^{\text {th }}$ magnitude object in early January. Since then, it has been located too close to the Sun to observe. As March begins, ATLAS will be slowly pulling away from the brightness of dawn. Based on its brightness when last observed in January, the comet may start March around $11^{\text {th }}$ magnitude and brighten to around magnitude 9.9 by the end of March. With no observations for the past month and a half, the predictions here could be off. The fact that no observations were made in late February does suggest it is fainter than predicted.

Perihelion occurs on March 1 at 1.03 au . But what could make this a nice $8-9^{\text {th }}$ magnitude object over the next two months is its close approach to Earth on April 23 at 0.46 au. The comet will become progressively easier to observe in the morning as it moves through Aquarius (Mar 1-2), Capricornus (2-14), and Aquila (14-31).

C/2020 R4 (ATLAS)

Fainter Comets of Interest (generally fainter than magnitude 10.0)

10P/Tempel - Jupiter-family comet 10P/Tempel (formally known as "Tempel 2") is one of 12 comets to bear the name of discoverer Ernst Wilhelm Leberecht Tempel. Though originally from Germany, Tempel made his discoveries while working in Marseilles, Milan, and Florence in France and Italy.

While working at Brera Observatory in Milan, Tempel visually swept up 10P on 1873 July 3. In $1873,10 \mathrm{P}$ had a perihelion distance of 1.34 au. Perihelion has slowly increased since that time to
its current value of 1.41 au . The current apparition marks its 24 th observed return. It has been seen at every return since its poorly placed 1941 return.
$10 \mathrm{P} /$ Tempel is one of the more interesting Jupiter-family comets. Its nucleus is a large 11 km in diameter ($\mathrm{H} \sim 13.6$). That combined with its relative inactivity to within 5-6 months before perihelion has allowed astronomers to directly study its nucleus even in modest sized professional telescopes (1-2 meters). Its rotation period of 8.948 hours (in 2010) has been observed to slow down by ~ 0.004 hours between per apparition though recently this rate of change appears to have slowed. When observing conditions are favorable, the comet has displayed near-nucleus jet features as well as a nicely defined anti-tail or trail (see this image by Francois Kugel from 2010 August 10) showing both kinds of features).

Unfortunately, this is not a good apparition to observe 10P. The comet comes to perihelion nearly on the other side of the Sun when it will be around magnitude 11 but at a solar elongation of only ~ 30 degrees. To make matters worse, the alignment of the ecliptic and comet's location in Capricornus (Mar 1-16) and Aquarius (16-31) means northern hemisphere observers will miss out on 10P in March when it is at its brightest. We can all look forward to its next return which will be its best since 1967. On 2026 August 3, 10P will pass within 0.41 au of Earth when it will be closer to magnitude 7.5 in brightness.

Figure 1-10P/Tempel as imaged by Tenho Tuomi two apparitions ago on 2010 July 9. Image is a co-add of 13x60-sec exposures with a 0.3-mf/5 reflector.

10P/Tempel							MPC114607		
$\mathrm{T}=2021$-Mar-24 q = 1.41 au								Max El	
Jupiter-family comet - 5.4-yr orbital period									
Date	R.A.	Decl.	r	d	Elong	Const	Mag	40N	40S
2021-Mar-01	2106	-16 23	1.434	2.256	26M	Cap	11.6	0	6
2021-Mar-06	2123	-15 35	1.426	2.237	26M	Cap	11.4	0	7
2021-Mar-11	2140	-14 43	1.419	2.221	27M	Cap	11.2	0	8
2021-Mar-16	2157	-13 47	1.415	2.206	28M	Cap	11.1	0	10
2021-Mar-21	2214	-12 47	1.413	2.193	29M	Aqr	11.0	0	11
2021-Mar-26	2230	-11 43	1.413	2.181	30M	Aqr	11.1	0	12
2021-Mar-31	2247	-10 38	1.414	2.172	31M	Aqr	11.1	0	13
2021-Apr-05	2303	-09 30	1.418	2.164	31M	Aqr	11.1	0	13
Comet Magnitude Parameters --- $\mathrm{H}=-2.7$, $2.5 \mathrm{n}=80.0$ (pre-T)									
Comet	Magnitu	de Param	ers	$\mathrm{H}=$	2, 2.	$=8$	1 (po	-T)	

29P/Schwassmann-Wachmann-29P/Schwassmann-Wachmann was discovered photographically in 1927 by German astronomer team Arnold Schwassmann and Arno Arthur Wachmann. If you image 29P, please consider contributing your observations to the British Astronomical Society's (BAA) 29P monitoring program coordinated by Richard Miles. You can find more information at the BAA's "Observing the outbursting comet 29P/Schwassmann-Wachmann" page (https://britastro.org/node/18562).

29 P is slowly sinking into the evening sky at the end of dusk. It is already lost to southern observers due to its location north of the Sun in Aries.

29P/Schwassmann-Wachmann											
$T=2019-M a r-07 \quad q=5.77 \mathrm{au}$										$\begin{array}{r} \text { Max El } \\ \text { (deg) } \end{array}$	
Date		A.	De		r	d	Elong	Const	Mag	40 N	40 S
2021-Mar-01	02	33	+24	10	5.861	6.234	63 E	Ari	15.7	46	3
2021-Mar-06	02	36	+24	17	5.862	6.306	59 E	Ari	15.7	41	1
2021-Mar-11	02	39	+24	25	5.863	6.374	55 E	Ari	15.7	37	0
2021-Mar-16	02	42	+24	34	5.865	6.439	50 E	Ari	15.7	33	0
2021-Mar-21	02	46	+24	44	5.866	6.501	46 E	Ari	15.7	29	0
2021-Mar-26	02	50	+24	54	5.867	6.559	42 E	Ari	15.8	25	0
2021-Mar-31	02	53	+25	05	5.868	6.612	38E	Ari	15.8	21	0
2021-Apr-05	02	57	+25	17	5.870	6.661	34 E	Ari	15.8	17	0

C/2019 N1 (ATLAS) - C/2019 N1 (ATLAS) is a dynamically new long-period comet discovered by on 2019 July 5 at $18^{\text {th }}$ magnitude. As is characteristic for a dynamically new long-period comet, N1 has brightened very slowly since discovery (at a 2.5 n rate ~ 7.5). Last month, Chris Wyatt placed C/2019 N1 at magnitude 13.2 on January 23 and 12.8 on the $25^{\text {th }}$. Other reports to the COBS site place the comet as bright as 11.9. This month, it is only visible from the southern hemisphere as it moves through Octans (Mar 1-10), Hydrus (10-31) and passes within a few degrees of the celestial south pole at the end of the month.

C/2019 N1 (ATLAS)											
$\mathrm{T}=2020-$ Dec-01 $\mathrm{q}=1.70 \mathrm{au}$										$\begin{array}{r} \text { Max El } \\ \text { (deg) } \end{array}$	
Long-period comet - Dynamically new											
Date		A.	De	l.	r	d	Elong	Const	Mag	40N	40 S
2021-Mar-01	23	49	-88	04	2.048	1.965	80E	Oct	12.6	0	40
2021-Mar-06	02	19	-84	52	2.084	1.997	80 E	Oct	12.7	0	42
2021-Mar-11	02	54	-81	26	2.120	2.035	81 E	Hyi	12.8	0	43
2021-Mar-16	03	11	-78	09	2.157	2.077	80 E	Hyi	12.9	0	45
2021-Mar-21	03	23	-75	04	2.195	2.124	80 E	Hyi	13.0	0	45
2021-Mar-26	03	32	-72	13	2.234	2.173	80 E	Hyi	13.1	0	46
2021-Mar-31	03	41	-69	35	2.274	2.226	79 E	Hyi	13.2	0	46
2021-Apr-05	03	48	-67	09	2.314	2.281	79 E	Ret	13.3	0	46
Comet Magnitude Parameters --- $\mathrm{H}=8.8$, 2.5n $=7.5$											

Figure 2 - C/2020 N1 (ATLAS) as imaged by Denis Buczynski on 2021 February 1 with a C14 + ASI 1600MM Pro camera.

C/2020 T2 (Palomar) - Dmitry Duev of the California Institute of Technology identified this 19th magnitude comet during the course of the Zwicky Transient Facility survey with the Palomar 1.2-m Schmidt telescope on 2020 October 7. Pre-discovery observations from PanSTARRS and the Mount Lemmon Survey were found as far back as 2019 December 11.
$\mathrm{C} / 2020 \mathrm{~T} 2$ is a long-period comet with an orbital period of ~ 5800 years and is still months from its 2021 July 11 perihelion at 2.05 au . Observations submitted to the COBS site show C/2020 T2 rapidly brightening from around magnitude 17 in late December to 13 in late February. In fact, a fit to that data shows a $2.5 \mathrm{n} \sim 30$ rate of brightening. The prediction below is for a more "normal" rate $(2.5 \mathrm{n}=10)$ as it is unlikely a $2.5 \mathrm{n}=30$ rate is sustainable through perihelion.

The comet is well placed for northern observers as it moves through Canes Venatici (Mar 1-11), Bootes (11-18), and back into Canes Venatici (18-31) near opposition. Southern observers can observe C/2020 T2 as well though it'll be a lowish object.

C/2020 T2 (Palomar)											
$\mathrm{T}=2021-\mathrm{Jul}-11 \mathrm{q}=2.05 \mathrm{au}$										Max El (deg)	
Long-period comet - ~5800-year orbital period (deg)											
Date		A.	Dec	l.	r	d	Elong	Const	Mag	40N	40S
2021-Mar-01	14	04	+31	03	2.572	1.836	128M	CVn	12.8	81	19
2021-Mar-06	14	06	+31	43	2.539	1.779	130M	CV n	12.7	82	18
2021-Mar-11	14	07	+32	21	2.506	1.726	132M	CV n	12.6	82	18
2021-Mar-16	14	07	+32	56	2.474	1.677	133M	Boo	12.5	83	17
2021-Mar-21	14	07	+33	27	2.442	1.632	135M	CV	12.3	83	17
2021-Mar-26	14	06	+33	53	2.412	1.592	136M	CV n	12.2	84	16
2021-Mar-31	14	04	+34	12	2.382	1.555	136M	CV n	12.1	84	16
2021-Apr-05	14	02	+34		2.354	1.523	136M	CVn	12.0	84	16

C/2020 Al (Leonard) - The 10th comet to bear Catalina Sky Survey astronomer Greg Leonard's name was found on 2021 January 3 with the Mount Lemmon 1.5-m reflector. C/2020 A1 (Leonard) was around magnitude 19 and located at a distance of 5.1 au from the Sun at discovery. Pre-discovery observations from Mount Lemmon and PANSTARRS have been found back to April 2020 (when the comet was 7.5 au from the Sun). C/Leonard is a dynamically old long-period comets with an orbital period of $\sim 70,000$ years.

Perihelion arrives on 2022 January 3 at 0.62 au . As a result, Leonard has the potential to be a nice object at the end of 2021. Prior to perihelion, the comet makes a close approach to Earth on December 12 at 0.233 au (34.9 million km or 21.7 million miles) and close approach to Venus on 2021 December 18 at 0.028 au (4.2 million km or 2.6 million miles). From Earth, the phase angle will reach a maximum of 160.5 degrees on December 14. Such a large phase angle may result in enhanced brightness due to forward scattering by dust in the coma and tail. Without forward scattering, the comet's current rate of brightening $(2.5 n=8)$ suggests a peak brightness around magnitude 6 . If the comet proves to be dust-rich, forward scattering could add an additional 3-4 magnitudes in mid-December (so more like magnitude 2 to 3). Though as exciting as that sounds, the comet will be at a solar elongation of only 15 degrees at that time so a difficult object to observe.

Figure 3 - C/2021 A1 (Leonard) shows a hint of a tail in this 2021 February 15 co-added 10x120-s image by Denis Buczynski with a C14 and ASI 1600MM Pro camera.

I was able to observe the comet a few times with iTelescope $0.51-\mathrm{m}$ and $0.61-\mathrm{m}$ telescopes. The following photometry was conducted on unfiltered image data calibrated with V-band reference stars: Jan. 17.47, V=19.1; Feb. 7.39, 18.7; and Feb. 22.46, 18.5. Although data submitted to the MPC going back to April 2020 produce a rapid brightening rate of $2.5 \mathrm{n} \sim 17$, a fit to my data suggest its current rate of brightening has slowed to a more "normal" $2.5 \mathrm{n} \sim 8$. That rate still predicts a peak brightness (without any forward scattering enhancement) of $6^{\text {th }}$ magnitude.

In the meantime, imagers are encouraged to follow its development as the comet can be observed without interruption this year (at least from the northern hemisphere as it is currently located Ursa Major). Visual observers may have to wait till September to observe the comet when it will be around $13-14^{\text {th }}$ magnitude. This month, Leonard will still be a faint object around $18^{\text {th }}$ magnitude as its distance from the Sun drops from 3.9 to 3.6 au .

C/2021 A1 (Leonard)										
$\mathrm{T}=2022$-Jan-03 q $=0.61 \mathrm{au}$									$\begin{gathered} \text { Max El } \\ \text { (deg) } \end{gathered}$	
Long-period comet - Dynamically old										
Date	R.A.	Dec	l.	r	d	Elong	Const	Mag	40N	40 S
2021-Mar-01	1347	+53	54	4.488	3.892	121 M	UMa	18.3	76	0
2021-Mar-06	1341	+55	12	4.434	3.832	121M	UMa	18.3	75	0
2021-Mar-11	1333	+56	26	4.380	3.779	121 M	UMa	18.2	74	0
2021-Mar-16	1324	+57	36	4.326	3.733	120M	UMa	18.1	72	0
2021-Mar-21	1314	+58	40	4.272	3.694	119M	UMa	18.1	71	0
2021-Mar-26	1303	+59	37	4.218	3.661	117 M	UMa	18.0	70	0
2021-Mar-31	1251	+60	24	4.163	3.634	115M	UMa	17.9	70	0
2021-Apr-05	1239	+61		4.107	3.613	112M	UMa	17.9	69	0
Comet Magnitude Parameters --- H = 10.2, $2.5 n=8.0$										

C/2020 A2 (NEOWISE) - Jana Chesley (Jet Propulsion Laboratory) reported the discovery of this comet in images taken on 2021 January 3 by the NEOWISE spacecraft in low-Earth orbit. Though estimated to have a visual magnitude of magnitude 15 by NEOWISE, ground-based visual observers were able to observe the comet as it peaked a little shy of magnitude 10.0 in late January and early February. Chris Wyatt spotted A2 at magnitude 10.3 on February 2.

Perihelion occurred on 2021 January 22 at 1.41 au and a close approach to Earth of 0.50 au on February 3. As a result, the comet is now fading as it recedes from the Sun and Earth. Moving north through the winter Milky Way constellation of Auriga (Mar 1-31), C/2021 A2 will only be visible to northern observers by mid-month.

C/2021 A2 (NEOWISE)										
$\mathrm{T}=2021$-Jan-22 $\mathrm{q}=1.41 \mathrm{au}$									$\begin{array}{r} \text { Max El } \\ \text { (deg) } \end{array}$	
Long-period comet										
Date	R.A.	De	l.	r	d	Elong	Const	Mag	40N	40 S
2021-Mar-01	0523	+36	02	1.511	0.957	101E	Aur	12.2	83	11
2021-Mar-06	0513	+39	24	1.538	1.090	95E	Aur	12.5	78	7
2021-Mar-11	0507	+42	01	1.567	1.224	89E	Aur	12.9	72	3
2021-Mar-16	0502	+44	08	1.599	1.358	84 E	Aur	13.2	67	0
2021-Mar-21	0459	+45	53	1.633	1.491	79E	Aur	13.5	62	0
2021-Mar-26	0458	+47	24	1.669	1.621	74 E	Aur	13.7	57	0
2021-Mar-31	0458	+48	44	1.706	1.749	70 E	Aur	14.0	53	0
2021-Apr-05	0459	+49	56	1.746	1.873	67 E	Aur	14.3	49	0
	met Ma	it	e	ramet	---	10.5	$2.5 n$	$=10$		

Figure 4 - Martin Mobberley caught C/2021 A4 (NEOWISE) traversing a beautiful region of Monoceros on 2021 February 10 with a Takahashi FSQ106 + STL-11000M.

C/2021 A4 (NEOWISE) - NEOWISE detected this object as a new fast moving asteroidal object in data taken on January 3. Follow-up ground-based observers found the comet to be around $18^{\text {th }}$ magnitude in the days following discovery. Around a month later in early February, imagers reported a significantly brighter $\mathrm{C} / 2021 \mathrm{~A} 4$ at $13^{\text {th }}$ magnitude. It was around this time, on February 12, that the comet passed 0.43 au from Earth. Since then, the comet's geocentric distance has been increasing but any apparent fading has been offset by a rapid intrinsic brightening as the comet approaches a March 20 perihelion at 1.15 au . The comet should still be around $12-13^{\text {th }}$ magnitude as March begins though it may fade as the month progresses.

It is observable from both hemispheres as it moves through the evening constellations of Taurus (Mar 1-16) and Eridanus (16-31). Its orbital period is a relatively short ~ 300 years.

Figure 5-C/2021 A4 (NEOWISE) also shows a hint of a tail in this 2021 February 17 co-added 5x120-s image by Denis Buczynski with a C14 and ASI 1600MM Pro camera.

C/2021 A4 (NEOWISE)										
$\mathrm{T}=2021$-Mar-20 q $=1.15 \mathrm{au}$										
Long-period comet - ~300-year orbital period (deg)										
Date	R.A.	De	1.	r	d	Elong	Const	Mag	40 N	40S
2021-Mar-01	0432	+15	55	1.185	0.676	88E	Tau	12.8	60	26
2021-Mar-06	0424	+09	08	1.167	0.796	80 E	Tau	13.0	50	29
2021-Mar-11	0419	+04	11	1.155	0.921	74 E	Tau	13.1	42	31
2021-Mar-16	0416	+00	27	1.148	1.047	68E	Tau	13.3	34	32
2021-Mar-21	0414	-02	29	1.146	1.170	63 E	Eri	13.5	28	32
2021-Mar-26	0413	-04	53	1.150	1.289	58E	Eri	13.8	21	31
2021-Mar-31	0412	-06	54	1.160	1.402	54 E	Eri	14.1	15	31
2021-Apr-05	0412	-08	37	1.174	1.508	51 E	Eri	14.4	10	30
Comet Magnitude Parameters --- H = 11.2, $2.5 \mathrm{n}=33.6$										

C/2021 D1 (SWAN) - The latest comet discovery was found in data taken with the Solar Wind Anisotropies (SWAN) instrument on the Solar and Heliospheric Observatory (SOHO) spacecraft. Although the discovery involved spacecraft data, it was pretty much a 100% amateur effort. Michael Mattiazzo of Swan Hill, Victoria, Australia first reported the comet on February 25 in SWAN images going back to February 19. After reporting the find on the comets-ml, a number of ground-based observers started hunting for the possible comet. While there was some doubt of its reality, which was even shared by Mattiazzo, Michael Jaeger was able to image the comet on February 28 at around magnitude 10.8.

Check out former ALPO Comets Section Recorder Don Machholz's podcast, Looking Up with Don \#61 (SWAN discussion starting around minute 14), for a nice rundown of the story behind SWAN's discovery.

The Minor Planet Center published an orbit with a Halley-like orbital period of ~ 77 years, while Seiichi Nakano and the Central Bureau of Astronomical Telegrams published an e=1 assumed orbit. We'll know more about whether it is a Halley-type or long-period comet as more observations are made. What we do know is that perihelion was back on 2021 February 27 at 0.90 au . The comet is currently on the other side of the Sun from Earth, so this isn't a very good apparition, and the comet is unlikely to become any brighter.

This month, it is observable low in the western evening sky in Pegasus (Mar 1-9), Pisces (9-12), Andromeda (12-17), Pisces (17-25), and Triangulum (25-31) from the northern hemisphere.

Figure 6 - Denis Buczynski caught C/2021 D1 (SWAN) on March 1 when it was still posted on the PCCP as object SWAN21D.

C/2021 D1 (SWAN)									
$\mathrm{T}=2021-\mathrm{Feb}-27 \mathrm{q}=0.90 \mathrm{au}$								$\begin{gathered} \text { Max El } \\ \text { (deg) } \end{gathered}$	
Long-period comet									
Date	R.A.	Decl.	r	d	Elong	Const	Mag	40N	40 S
2021-Mar-01	2331	+13 43	0.895	1.703	24 E	Peg	10.8	5	0
2021-Mar- 6	2355	+1708	0.902	1.683	25E	Peg	10.8	7	0
2021-Mar-11	0019	+20 24	0.917	1.671	27E	Psc	10.8	9	0
2021-Mar-16	0045	+23 26	0.941	1.667	29E	And	10.9	11	0
2021-Mar-21	0112	+26 10	0.971	1.673	31 E	Psc	11.0	13	0
2021-Mar-26	0140	+28 33	1.008	1.689	32E	Tri	11.2	15	0
2021-Mar-31	0209	+30 30	1.050	1.714	34 E	Tri	11.3	16	0
2021-Apr-05	0237	+32 02	1.096	1.749	35E	Tri	11.5	18	0
Comet Magnitude Parameters --- H = 10.0, 2.5n = 8.0 [CBET 4939]									

New Discoveries, Recoveries and Other Comets in the News

Newly Numbered Comets (from M.P.C. 127300)
$410 \mathrm{P}=2005 \mathrm{CR} 16=2003 \mathrm{WR} 168=2020 \mathrm{~W} 2($ NEAT-LINEAR $)$
$411 \mathrm{P}=2007 \mathrm{~B} 1=2020 \mathrm{~W} 3$ (Christensen)
$412 \mathrm{P}=2010 \mathrm{~B} 2=2020 \mathrm{Y} 1$ (WISE)
$413 \mathrm{P}=2014 \mathrm{E} 1=2020 \mathrm{~W} 4$ (Larson)
$414 \mathrm{P}=2016 \mathrm{~J} 3=2021 \mathrm{~A} 3$ (STEREO)
$415 \mathrm{P}=2013 \mathrm{EW} 90=2020 \mathrm{Y} 4$ (Tenagra)
$416 \mathrm{P}=2013 \mathrm{~A} 2=2021 \mathrm{~A} 8$ (Scotti)
$417 \mathrm{P}=2015 \mathrm{~J} 3=2021 \mathrm{~B} 1$ (NEOWISE)
$418 \mathrm{P}=2010 \mathrm{~A} 5=2020 \mathrm{Y} 5($ LINEAR $)$

C/2021 C3 (Catalina) - The Catalina Sky Survey used the 0.68-m Catalina Schmidt near Mount Bigelow, north of Tucson, to discover this $19^{\text {th }}$ magnitude comet on February 7. Perihelion occurred on 2021 February 12 at 2.28 au. Minimum distance to the Earth will happen in midMarch at 1.33 au . Around that time C/2021 C3 will reach a maximum brightness around magnitude 18.0.

P/2021 C2 (PANSTARRS) - The Pan-STARRS1 1.8-m Ritchey-Chretien reflector at Haleakala was used to discover this $21^{\text {st }}$ magnitude comet on February 12. The object is a borderline Centaur with a perihelion just inside Jupiter's orbit at 4.89 au , aphelion at 14.2 au , and orbital period of 29.46 years. The object is currently close to its 2021 March 2 perihelion and peak brightness.

C/2021 C1 (Rankin) - David Rankin found the 7th comet to bear his name on February 11 with the Mount Lemmon 1.5-m reflector. Perihelion was back on 2020 December 6 at 3.48 au. Peak brightness will be reached in late March at magnitude 19.1 as C/2021 C1 passes through opposition.

C/2021 B3 (NEOWISE) - The NEOWISE spacecraft discovered its $36^{\text {th }}$ comet on January 22. Of its discoveries, 16 carry the 'WISE' name and 16 the 'NEOWISE' names. C/2021 B3 was around $18-19^{\text {th }}$ magnitude at discovery. It is a Halley-family comet with an orbital period of 136 ± 30 years. Perihelion is on 2021 March 11 at 2.16 au. The comet should have already peaked at $18^{\text {th }}$ magnitude last month.

P/2021 A11 = P/2015 F1 (PANSTARRS) - Erwan Schwab reported his recovery of P/2015 F1 (PANSTARRS) on images taken on 2021 January 13 and February 10, 13, and 14 with the $0.8-\mathrm{m}$ $\mathrm{f} / 3$ Schmidt reflector at Calar Alto, Spain and $1.0-\mathrm{m} \mathrm{f} / 4.4$ reflector at the European Space Agency's Optical Ground Station at Tenerife. The recovery team also included D. Koschny, M. Micheli, and E. Petrescu. Perihelion is still a few months away on 2021 October 27 at 2.54 au.
$\mathrm{P} / 2015 \mathrm{~F} 1$ was discovered on 2015 March 21. During that apparition is peaked at $15^{\text {th }}-16^{\text {th }}$ magnitude. Currently the comet is running about 2.5-3 magnitudes fainter than expected. It is unknown if the comet is fainter this apparition or, since it was not observed at a similar point in its orbit last time, it will rapidly brighten in the months prior to perihelion.

C/2021 A10 (NEOWISE) - On January $12^{\text {th }}$, the NEOWISE spacecraft detected an apparent fastmoving asteroid. After being posted on the MPC PCCP, follow-up observers detected marginal evidence of cometary activity. Seiichi Nakano determined a long-period orbit with a period of ~ 880 years and perihelion on 2021 March 15 at 1.27 au. A peak brightness of $\sim 18^{\text {th }}$ magnitude should be reached around the time of close approach to Earth (2021 February 10 at 0.58 au).

As always, the Comet Section is happy to receive all comet observations, whether textual descriptions, images, drawings, magnitude estimates, or spectra. Please send your observations via email to < carl.hergenrother @ alpo-astronomy.org >.

Thank you to everyone who contributed to the ALPO Comets Section!
Stay safe and enjoy the sky!

- Carl Hergenrother (ALPO Comets Section Coordinator)

Recent Magnitude Measurements Contributed to the ALPO Comet Section

Comet Des	YYYY MM DD.DD (UT)		Mag		APER $F L$ T	POW	COMA		TAIL		ICQ	CODE		Observer Name
C/2021 A2 (NEOWISE)														
2021A2	20210202.46	xM	10.3:	:TK	25.0L 5	40	3.5	4			ICQ		WYA	Christopher Wyatt
C/2021 A1 (Leonard)														
2021A1	20210222.46	C	18.5	U4	61.0Y 7	A440	0.3				ICQ		HER02	Carl Hergenrother
C/2020 M3 (ATLAS)														
2020M3	20210116.85	S	10.5	TK	20.3T10	77	4	2			ICQ	XX	GON05	J J Gonzalez Suarez
2020M3	20210113.83	S	10.3	TK	20.3T10	77	5	2			ICQ		GON05	J J Gonzalez Suarez
2020M3	20210107.89	S	10.5	TK	20.3T10	100	5	2			ICQ	XX	GON05	J J Gonzalez Suarez
C/2019 T4 (ATLAS)														
2019T4	20210125.68	xM	14.2	AQ	40.0L 4	182	1	$5 /$			ICQ	XX	WYA	Christopher Wyatt
2019T4	20210123.64	xM	14.2	AQ	40.0L 4	182	0.9	6			ICQ	XX	WYA	Christopher Wyatt
C/2019 N1 (ATLAS)														
2019N1	20210209.46	xM	12.9	AQ	25.0L 5	5179	0.8	$3 /$			ICQ		WYA	Christopher Wyatt
156P/Russell-LINEAR														
156	20210206.89	S	11.0	TK	20.3T10	100	3	3			ICQ	XX	GON05	J J Gonzalez Suarez
156	20210202.44	xS	12.8	AQ	25.0L 5	74	2	$3 /$			ICQ		WYA	Christopher Wyatt
141P/Machholz														
141	20210209.44	xS	13.3	AQ	25.0L 5	574	0.8	3			ICQ		WYA	Christopher Wyatt
141	20210206.83	S	10.5	TK	20.3T10	77	5	2 /			ICQ	XX	GON05	J J Gonzalez Suarez
141	20210202.45	xS	11.2	AQ	25.0L 5	40	5	3			ICQ		WYA	Christopher Wyatt
88P/Howell														
88	20210206.80	S	9.7	TK	20.3T10	- 77	7	2			ICQ		GON05	J J Gonzalez Suarez
29P/Schwassmann-Wachmann														
29	20210113.82	S	10.8	TK	20.3 T 10	77	6	$1 /$			ICQ	XX	GON05	J J Gonzalez Suarez
29	20210113.47	xI	14.4	AQ	25.0L 5	125					ICQ	XX	WYA	Chris Wyatt
29	20210111.46	xI	14.3	AQ	25.0L 5	5125					ICQ	XX	WYA	Christopher Wyatt
29	20210107.82	S	11.0	TK	20.3T10	77	6	1			ICQ	XX	GON05	J J Gonzalez Suarez
29	20210105.44	xI [13.5	AQ	25.0L 5	5125					ICQ	XX	WYA	Christopher Wyatt

Recent Select Images Contributed to the ALPO Comet Section
84P/Giclas

156P/Russell-LINEAR

398P/Boattini, m=14.8, fan tail PA 90*, 2021/02/06 0545UT 05h54m06s +20*03'27", 1x120s 11" SCT f/6.4 STF-8300M 1.24"/pixel FOV 13.1'x8.4'

Mike Olason, Tucson Arizona

C/2014 B1 (Schwartz) (the "Discus" comet)

C/2014 B1 (Schwartz), m=18.1, coma/tail complex spans 69"x27", 2021/02/07 0857-0927UT, 3x600s, FOV 15.3'x9.2' 11" SCT f/6.4 STF-8300M 1.24"/pixel

Mike Olason, Tucson Arizona

C/2020 M3 (ATLAS)

P/2020 T3 (PANSTARRS)

P/2020 T3 (PANSTARRS), $m=18.0$, tail $2^{\prime} 43^{\prime \prime}$ PA 70*, 2021/01/23 0242-0312UT, 10x180s, FOV 13.1'x8.4' 11" SCT f/6.4 STF-8300M 1.24"/pixel

Mike Olason, Tucson Arizona

